withReplicates.Rd
Given a function or expression computing a statistic based on sampling
weights, withReplicates
evaluates the statistic and produces a
replicate-based estimate of variance. vcov.svrep.design
produces
the variance estimate from a set of replicates and the design object.
withReplicates(design, theta,..., return.replicates=FALSE)
# S3 method for svyrep.design
withReplicates(design, theta, rho = NULL, ...,
scale.weights=FALSE, return.replicates=FALSE)
# S3 method for svrepvar
withReplicates(design, theta, ..., return.replicates=FALSE)
# S3 method for svrepstat
withReplicates(design, theta, ..., return.replicates=FALSE)
# S3 method for svyimputationList
withReplicates(design, theta, ..., return.replicates=FALSE)
# S3 method for svyrep.design
vcov(object, replicates, centre,...)
A survey design with replicate weights (eg from svrepdesign
) or a suitable object with replicate parameter estimates
A function or expression: see Details below
If design
uses BRR weights, rho
optionally
specifies the parameter for Fay's variance estimator.
Other arguments to theta
Divide the probability weights by their sum (can help with overflow problems)
Return the replicate estimates as well as the variance?
The replicate-weights design object used to create the replicates
A set of replicates
The centering value for variance calculation. If
object$mse
is TRUE
this is the result of estimation using the sampling weights, and
must be supplied. If object$mse
is FALSE
the
mean of the replicates is used and this argument is silently ignored.
The method for svyrep.design
objects evaluates a function or
expression using the sampling weights and then each set of replicate
weights. The method for svrepvar
objects evaluates the function
or expression on an estimated population covariance matrix and its
replicates, to simplify multivariate statistics such as structural
equation models.
For the svyrep.design
method, if theta
is a function its first argument will be a vector of
weights and the second argument will be a data frame containing the
variables from the design object. If it is an expression, the sampling weights will be available as the
variable .weights
. Variables in the design object will also
be in scope. It is possible to use global variables in the
expression, but unwise, as they may be masked by local variables
inside withReplicates
.
For the svrepvar
method a function will get the covariance
matrix as its first argument, and an expression will be evaluated with
.replicate
set to the variance matrix.
For the svrepstat
method a function will get the point estimate, and an expression will be evaluated with
.replicate
set to each replicate. The method can only be used
when the svrepstat
object includes replicates.
The svyimputationList
method runs withReplicates
on each imputed design (which must be replicate-weight designs).
If return.replicates=FALSE
, the weighted statistic, with the
variance matrix as the "var"
attribute. If
return.replicates=TRUE
, a list with elements theta
for
the usual return value and replicates
for the replicates.
data(scd)
repweights<-2*cbind(c(1,0,1,0,1,0), c(1,0,0,1,0,1), c(0,1,1,0,0,1),
c(0,1,0,1,1,0))
scdrep<-svrepdesign(data=scd, type="BRR", repweights=repweights)
#> Warning: No sampling weights provided: equal probability assumed
a<-svyratio(~alive, ~arrests, design=scdrep)
print(a$ratio)
#> arrests
#> alive 0.1535064
print(a$var)
#> [,1]
#> [1,] 8.870627e-05
withReplicates(scdrep, quote(sum(.weights*alive)/sum(.weights*arrests)))
#> theta SE
#> [1,] 0.15351 0.0094
withReplicates(scdrep, function(w,data)
sum(w*data$alive)/sum(w*data$arrests))
#> theta SE
#> [1,] 0.15351 0.0094
data(api)
dclus1<-svydesign(id=~dnum, weights=~pw, data=apiclus1, fpc=~fpc)
rclus1<-as.svrepdesign(dclus1)
varmat<-svyvar(~api00+api99+ell+meals+hsg+mobility,rclus1,return.replicates=TRUE)
withReplicates(varmat, quote( factanal(covmat=.replicate, factors=2)$unique) )
#> theta SE
#> api00 0.005000 0.0651
#> api99 0.040393 0.0316
#> ell 0.452180 0.6865
#> meals 0.181142 0.0569
#> hsg 0.995913 0.0409
#> mobility 0.930017 0.0488
data(nhanes)
nhanesdesign <- svydesign(id=~SDMVPSU, strata=~SDMVSTRA, weights=~WTMEC2YR, nest=TRUE,data=nhanes)
logistic <- svyglm(HI_CHOL~race+agecat+RIAGENDR, design=as.svrepdesign(nhanesdesign),
family=quasibinomial, return.replicates=TRUE)
fitted<-predict(logistic, return.replicates=TRUE, type="response")
sensitivity<-function(pred,actual) mean(pred>0.1 & actual)/mean(actual)
withReplicates(fitted, sensitivity, actual=logistic$y)
#> theta SE
#> [1,] 0.77891 0.0246
if (FALSE) {
library(quantreg)
data(api)
## one-stage cluster sample
dclus1<-svydesign(id=~dnum, weights=~pw, data=apiclus1, fpc=~fpc)
## convert to bootstrap
bclus1<-as.svrepdesign(dclus1,type="bootstrap", replicates=100)
## median regression
withReplicates(bclus1, quote(coef(rq(api00~api99, tau=0.5, weights=.weights))))
}
## pearson correlation
dstrat <- svydesign(id=~1,strata=~stype, weights=~pw, data=apistrat, fpc=~fpc)
bstrat<- as.svrepdesign(dstrat,type="subbootstrap")
v <- svyvar(~api00+api99, bstrat, return.replicates=TRUE)
vcor<-cov2cor(as.matrix(v))[2,1]
vreps<-v$replicates
correps<-apply(vreps,1, function(v) v[2]/sqrt(v[1]*v[4]))
vcov(bstrat,correps, centre=vcor)
#> [1] 1.73213e-05
#> attr(,"means")
#> [1] 0.9754495