as.svrepdesign.Rd
Creates a replicate-weights survey design object from a traditional
strata/cluster survey design object. JK1
and JKn
are
jackknife methods, BRR
is Balanced Repeated Replicates and
Fay
is Fay's modification of this, bootstrap
is Canty
and Davison's bootstrap, subbootstrap
is Rao and Wu's
\((n-1)\) bootstrap, and mrbbootstrap
is Preston's multistage
rescaled bootstrap. With a svyimputationList
object, the same
replicate weights will be used for each imputation if the sampling
weights are all the same and separate.replicates=FALSE
.
as.svrepdesign(design,...)
# S3 method for default
as.svrepdesign(design, type=c("auto", "JK1", "JKn", "BRR", "bootstrap",
"subbootstrap","mrbbootstrap","Fay"),
fay.rho = 0, fpc=NULL,fpctype=NULL,..., compress=TRUE,
mse=getOption("survey.replicates.mse"))
# S3 method for svyimputationList
as.svrepdesign(design, type=c("auto", "JK1", "JKn", "BRR", "bootstrap",
"subbootstrap","mrbbootstrap","Fay"),
fay.rho = 0, fpc=NULL,fpctype=NULL, separate.replicates=FALSE, ..., compress=TRUE,
mse=getOption("survey.replicates.mse"))
Object of class survey.design
or
svyimputationList
. Must not have been
post-stratified/raked/calibrated in R
Type of replicate weights. "auto"
uses JKn for
stratified, JK1 for unstratified designs
Tuning parameter for Fay's variance method
Passed to jk1weights
, jknweights
,
brrweights
, bootweights
, subbootweights
, or
mrbweights
.
Compute replicate weights separately for each design (useful for the bootstrap types, which are not deterministic
Use a compressed representation of the replicate weights matrix.
if TRUE
, compute variances from sums of squares around
the point estimate, rather than the mean of the replicates
Object of class svyrep.design
.
Canty AJ, Davison AC. (1999) Resampling-based variance estimation for labour force surveys. The Statistician 48:379-391
Judkins, D. (1990), "Fay's Method for Variance Estimation," Journal of Official Statistics, 6, 223-239.
Preston J. (2009) Rescaled bootstrap for stratified multistage sampling. Survey Methodology 35(2) 227-234
Rao JNK, Wu CFJ. Bootstrap inference for sample surveys. Proc Section on Survey Research Methodology. 1993 (866--871)
data(scd)
scddes<-svydesign(data=scd, prob=~1, id=~ambulance, strata=~ESA,
nest=TRUE, fpc=rep(5,6))
scdnofpc<-svydesign(data=scd, prob=~1, id=~ambulance, strata=~ESA,
nest=TRUE)
# convert to BRR replicate weights
scd2brr <- as.svrepdesign(scdnofpc, type="BRR")
scd2fay <- as.svrepdesign(scdnofpc, type="Fay",fay.rho=0.3)
# convert to JKn weights
scd2jkn <- as.svrepdesign(scdnofpc, type="JKn")
# convert to JKn weights with finite population correction
scd2jknf <- as.svrepdesign(scddes, type="JKn")
## with user-supplied hadamard matrix
scd2brr1 <- as.svrepdesign(scdnofpc, type="BRR", hadamard.matrix=paley(11))
svyratio(~alive, ~arrests, design=scd2brr)
#> Ratio estimator: svyratio.svyrep.design(~alive, ~arrests, design = scd2brr)
#> Ratios=
#> arrests
#> alive 0.1535064
#> SEs=
#> [,1]
#> [1,] 0.009418401
svyratio(~alive, ~arrests, design=scd2brr1)
#> Ratio estimator: svyratio.svyrep.design(~alive, ~arrests, design = scd2brr1)
#> Ratios=
#> arrests
#> alive 0.1535064
#> SEs=
#> [,1]
#> [1,] 0.01001468
svyratio(~alive, ~arrests, design=scd2fay)
#> Ratio estimator: svyratio.svyrep.design(~alive, ~arrests, design = scd2fay)
#> Ratios=
#> arrests
#> alive 0.1535064
#> SEs=
#> [,1]
#> [1,] 0.009525187
svyratio(~alive, ~arrests, design=scd2jkn)
#> Ratio estimator: svyratio.svyrep.design(~alive, ~arrests, design = scd2jkn)
#> Ratios=
#> arrests
#> alive 0.1535064
#> SEs=
#> [,1]
#> [1,] 0.009846457
svyratio(~alive, ~arrests, design=scd2jknf)
#> Ratio estimator: svyratio.svyrep.design(~alive, ~arrests, design = scd2jknf)
#> Ratios=
#> arrests
#> alive 0.1535064
#> SEs=
#> [,1]
#> [1,] 0.007627033
data(api)
## one-stage cluster sample
dclus1<-svydesign(id=~dnum, weights=~pw, data=apiclus1, fpc=~fpc)
## convert to JK1 jackknife
rclus1<-as.svrepdesign(dclus1)
## convert to bootstrap
bclus1<-as.svrepdesign(dclus1,type="bootstrap", replicates=100)
svymean(~api00, dclus1)
#> mean SE
#> api00 644.17 23.542
svytotal(~enroll, dclus1)
#> total SE
#> enroll 3404940 932235
svymean(~api00, rclus1)
#> mean SE
#> api00 644.17 26.329
svytotal(~enroll, rclus1)
#> total SE
#> enroll 3404940 932235
svymean(~api00, bclus1)
#> mean SE
#> api00 644.17 22.157
svytotal(~enroll, bclus1)
#> total SE
#> enroll 3404940 988476
dclus2<-svydesign(id = ~dnum + snum, fpc = ~fpc1 + fpc2, data = apiclus2)
mrbclus2<-as.svrepdesign(dclus2, type="mrb",replicates=100)
svytotal(~api00+stype, dclus2)
#> total SE
#> api00 3440375.75 926665.59
#> stypeE 3493.55 1119.75
#> stypeH 688.87 289.35
#> stypeM 946.25 311.81
svytotal(~api00+stype, mrbclus2)
#> total SE
#> api00 3440375.75 1025894.94
#> stypeE 3493.55 1222.10
#> stypeH 688.87 309.64
#> stypeM 946.25 336.74