subset.survey.design.Rd
Restrict a survey design to a subpopulation, keeping the original design information about number of clusters, strata. If the design has no post-stratification or calibration data the subset will use proportionately less memory.
A survey design object
An expression specifying the subpopulation
Arguments not used by this method
A new survey design object
data(fpc)
dfpc<-svydesign(id=~psuid,strat=~stratid,weight=~weight,data=fpc,nest=TRUE)
dsub<-subset(dfpc,x>4)
summary(dsub)
#> Stratified Independent Sampling design (with replacement)
#> subset(dfpc, x > 4)
#> Probabilities:
#> Min. 1st Qu. Median Mean 3rd Qu. Max.
#> 0.2500 0.2708 0.3333 0.3056 0.3333 0.3333
#> Stratum Sizes:
#> 1 2
#> obs 4 2
#> design.PSU 5 3
#> actual.PSU 4 2
#> Data variables:
#> [1] "stratid" "psuid" "weight" "nh" "Nh" "x"
svymean(~x,design=dsub)
#> mean SE
#> x 6.195 0.7555
## These should give the same domain estimates and standard errors
svyby(~x,~I(x>4),design=dfpc, svymean)
#> I(x > 4) x se
#> FALSE FALSE 3.314286 0.3117042
#> TRUE TRUE 6.195000 0.7555129
summary(svyglm(x~I(x>4)+0,design=dfpc))
#>
#> Call:
#> svyglm(formula = x ~ I(x > 4) + 0, design = dfpc)
#>
#> Survey design:
#> svydesign(id = ~psuid, strat = ~stratid, weight = ~weight, data = fpc,
#> nest = TRUE)
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> I(x > 4)FALSE 3.3143 0.3117 10.63 0.000127 ***
#> I(x > 4)TRUE 6.1950 0.7555 8.20 0.000439 ***
#> ---
#> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#>
#> (Dispersion parameter for gaussian family taken to be 2.557379)
#>
#> Number of Fisher Scoring iterations: 2
#>
data(api)
dclus1<-svydesign(id=~dnum, weights=~pw, data=apiclus1, fpc=~fpc)
rclus1<-as.svrepdesign(dclus1)
svymean(~enroll, subset(dclus1, sch.wide=="Yes" & comp.imp=="Yes"))
#> mean SE
#> enroll 534.56 36.248
svymean(~enroll, subset(rclus1, sch.wide=="Yes" & comp.imp=="Yes"))
#> mean SE
#> enroll 534.56 40.398