| svyolr {survey} | R Documentation | 
Fits cumulative link models: proportional odds, probit, complementary log-log, and cauchit.
svyolr(formula, design, ...)
## S3 method for class 'survey.design2':
svyolr(formula, design, start, ..., na.action = na.omit, method = c("logistic", 
    "probit", "cloglog", "cauchit"))
## S3 method for class 'svyrep.design':
svyolr(formula,design,...,return.replicates=FALSE, 
    multicore=getOption("survey.multicore"))
| formula | Formula: the response must be a factor with at least three levels | 
| design | survey design object | 
| ... | dots | 
| start | Optional starting values for optimization | 
| na.action | handling of missing values | 
| multicore | Use multicorepackage to distribute computation of replicates across multiple
processors? | 
| method | Link function | 
| return.replicates | return the individual replicate-weight estimates | 
An object of class svyolr
The code is based closely on polr() from the MASS package of Venables and Ripley.
data(api) dclus1<-svydesign(id=~dnum, weights=~pw, data=apiclus1, fpc=~fpc) dclus1<-update(dclus1, mealcat=cut(meals,c(0,25,50,75,100))) svyolr(mealcat~avg.ed+mobility+stype, design=dclus1)