
Post-stratification and calibration

Thomas Lumley

UW Biostatistics

WNAR—2008–6–22



What are they?

Post-stratification and calibration are ways to use auxiliary

information on the population (or the phase-one sample) to

improve precision.

They are closely related to the Augmented Inverse-Probability

Weighted estimators of Jamie Robins and coworkers, but are

easier to understand.



Estimating a total

Population size N , sample size n, sampling probabilities πi,

sampling indicators Ri.

Goal: estimate

T =
N∑
i=1

yi

Horvitz–Thompson estimator:

T̂ =
∑
Ri=1

1

πi
yi

To estimate parameters θ replace yi by loglikelihood `i(θ) or

estimating functions Ui(θ).



Auxiliary information

HT estimator is inefficient when some additional population data

are available.

Suppose xi is known for all i

Fit y ∼ xβ by (probability-weighted) least squares to get β̂. Let

r2 be proportion of variation explained.

T̂reg =
∑
Ri=1

1

πi
(yi − xiβ̂) +

N∑
i=1

xiβ̂

ie, HT estimator for sum of residuals, plus population sum of

fitted values



Auxiliary information

Let β∗ be true value of β (ie, least-squares fit to whole

population).

Regression estimator

T̂reg =
∑
Ri=1

1

πi
(yi − xiβ∗) +

 N∑
i=1

xi

β∗+
N∑
i=1

(
1−

Ri
πi

)
xi(β̂ − β∗)

compare to HT estimator

T̂ =
∑
Ri=1

1

πi
(yi − xiβ∗) +

 ∑
Ri=1

1

πi
xi

β∗

Second term uses known vs observed total of x, third term is

estimation error for β, of smaller order.



Auxiliary information

For large n, N and under conditions on moments and sampling

schemes

var
[
T̂reg

]
= (1−r2) var

[
T̂
]
+O(N/

√
n) =

(
1− r2 +O(n−1/2)

)
var

[
T̂
]

and the relative bias is O(1/n)

The lack of bias does not require any assumptions about [Y |X]

β̂ is consistent for the population least squares slope β, for which

the mean residual is zero by construction.



Reweighting

Since β̂ is linear in y, we can write xβ̂ as a linear function of y

and so T̂reg is also a linear function of Y

T̂reg =
∑
Ri=1

wiyi =
∑
Ri=1

gi
πi
yi

for some (ugly) wi or gi that depend only on the xs

For these weights

N∑
i=1

xi =
∑
Ri=1

gi
πi
xi

T̂reg is an IPW estimator using weights that are ‘calibrated’ or

‘tuned’ (French: calage) so that the known population totals are

estimated correctly.



Calibration

The general calibration problem: given a distance function d(·, ·),
find calibration weights gi minimizing∑

Ri=1

d(gi, 1)

subject to the calibration constraints

N∑
i=1

xi =
∑
Ri=1

gi
πi
xi

Lagrange multiplier argument shows that gi = η(xiβ) for some
η(), β; and γ can be computed by iteratively reweighted least
squares.

For example, can choose d(, ) so that gi are bounded below (and
above).

[Deville et al JASA 1993; JNK Rao et al, Sankhya 2002]



Calibration

When the calibration model in x is saturated, the choice of

d(, ) does not matter: calibration equates estimated and known

category counts.

In this case calibration is also the same as estimating sampling

probabilities with logistic regression, which also equates esti-

mated and known counts.

Calibration to a saturated model gives the same analysis as

pretending the sampling was stratified on these categories: post-

stratification

Post-stratification is a much older method, and is computation-

ally simpler, but calibration can make more use of auxiliary data.



Standard errors

Standard errors come from the regression formulation

T̂reg =
∑
Ri=1

1

πi
(yi − xiβ̂) +

N∑
i=1

xiβ̂

The variance of the second term is of smaller order and is ignored.

The variance of the first term is the usual Horvitz–Thompson

variance estimator, applied to residuals from projecting y on the

calibration variables.



Computing

R provides calibrate() for calibration (and postStratify() for

post-stratification)

Three basic types of calibration

• Linear (or regression) calibration: identical to regression

estimator

• Raking: multiplicative model for weights, popular in US,

guarantees gi > 0

• Logit calibration: logit link for weights, popular in Europe,

provides upper and lower bounds for gi



Computing

Upper and lower bounds for gi can also be specified for linear

and raking calibration (these may not be achievable, but we

try). The user can specify other calibration loss functions (eg

Hellinger distance).



Computing

The calibrate() function takes three main arguments

• a survey design object

• a model formula describing the design matrix of auxiliary

variables

• a vector giving the column sums of this design matrix in the

population.

and additional arguments describing the type of calibration.



Computing

> data(api)

> dclus1<-svydesign(id=~dnum, weights=~pw, data=apiclus1, fpc=~fpc)

> pop.totals<-c(‘(Intercept)‘=6194, stypeH=755, stypeM=1018)

> (dclus1g<-calibrate(dclus1, ~stype, pop.totals))

1 - level Cluster Sampling design

With (15) clusters.

calibrate(dclus1, ~stype, pop.totals)

> svymean(~api00, dclus1g)

mean SE

api00 642.31 23.921

> svymean(~api00,dclus1)

mean SE

api00 644.17 23.542



Computing

> svytotal(~enroll, dclus1g)

total SE

enroll 3680893 406293

> svytotal(~enroll,dclus1)

total SE

enroll 3404940 932235

> svytotal(~stype, dclus1g)

total SE

stypeE 4421 1.118e-12

stypeH 755 4.992e-13

stypeM 1018 1.193e-13



Computing

> (dclus1g3 <- calibrate(dclus1, ~stype+api99,

c(pop.totals, api99=3914069)))

1 - level Cluster Sampling design

With (15) clusters.

calibrate(dclus1, ~stype + api99, c(pop.totals, api99 = 3914069))

> svymean(~api00, dclus1g3)

mean SE

api00 665.31 3.4418

> svytotal(~enroll, dclus1g3)

total SE

enroll 3638487 385524

> svytotal(~stype, dclus1g3)

total SE

stypeE 4421 1.179e-12

stypeH 755 4.504e-13

stypeM 1018 9.998e-14



Computing

> range(weights(dclus1g3)/weights(dclus1))

[1] 0.4185925 1.8332949

> (dclus1g3b <- calibrate(dclus1, ~stype+api99,

c(pop.totals, api99=3914069),bounds=c(0.6,1.6)))

1 - level Cluster Sampling design

With (15) clusters.

calibrate(dclus1, ~stype + api99, c(pop.totals, api99 = 3914069),

bounds = c(0.6, 1.6))

> range(weights(dclus1g3b)/weights(dclus1))

[1] 0.6 1.6



Computing

> svymean(~api00, dclus1g3b)

mean SE

api00 665.48 3.4184

> svytotal(~enroll, dclus1g3b)

total SE

enroll 3662213 378691

> svytotal(~stype, dclus1g3b)

total SE

stypeE 4421 1.346e-12

stypeH 755 4.139e-13

stypeM 1018 8.238e-14



Computing

> (dclus1g3c <- calibrate(dclus1, ~stype+api99, c(pop.totals,

+ api99=3914069), calfun="raking"))

1 - level Cluster Sampling design

With (15) clusters.

calibrate(dclus1, ~stype + api99, c(pop.totals, api99 = 3914069),

calfun = "raking")

> range(weights(dclus1g3c)/weights(dclus1))

[1] 0.5342314 1.9947612

> svymean(~api00, dclus1g3c)

mean SE

api00 665.39 3.4378



Computing

> (dclus1g3d <- calibrate(dclus1, ~stype+api99, c(pop.totals,

+ api99=3914069), calfun="logit",bounds=c(0.5,2.5)))

1 - level Cluster Sampling design

With (15) clusters.

calibrate(dclus1, ~stype + api99, c(pop.totals, api99 = 3914069),

calfun = "logit", bounds = c(0.5, 2.5))

> range(weights(dclus1g3d)/weights(dclus1))

[1] 0.5943692 1.9358791

> svymean(~api00, dclus1g3d)

mean SE

api00 665.43 3.4325



Types of calibration

Post-stratification allows much more flexibility in weights, in

small samples can result in very influential points, loss of

efficiency.

Calibration allows for less flexibility (cf stratification vs regression

for confounding)

Different calibration methods make less difference

Example from Kalton & Flores-Cervantes (J. Off. Stat, 2003):

a 3× 4 table of values.



Types of calibration

●

●

●
●

●
●

●

●

●

●

●

●

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

Index

C
al

ib
ra

tio
n 

w
ei

gh
t (

g)

1.1 2.1 3.1 4.1 1.2 2.2 3.2 4.2 1.3 2.3 3.3 4.3

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Post−stratified
Linear
Bounded linear
Raking



Two-phase studies

Sample a cohort of N people from population and measure some

variables then subsample n of them and measure more variables

[genes, biomarkers, coding of open-text data, copies of original

medical records]

Includes nested case–control, case–cohort designs.

Better use of auxiliary information by either stratifying the

sampling or calibrating to full cohort data after sampling.

Calibration of second phase is just like calibration of a single-

phase design.



RRZ estimators

Robins, Rotnitzky & Zhao defined augmented IPW estimators

for two-phase designs

N∑
i=1

Ri
πi
Ui(θ) +

N∑
i=1

(
1−

Ri
πi

)
Ai(θ) = 0

where Ai() can be any function of phase-1 data. Equivalent to

calibration estimator T̂reg using Ai as calibration variable.

N∑
i=1

Ri
πi

(Ui(θ)−Ai(θ)) +
N∑
i=1

Ai(θ) = 0



RRZ estimators

Includes the efficient estimator in the non-parametric phase-1

model (efficient design-based estimator) — the most efficient

estimator that is consistent for the same limit as if we had

complete data.

Typically not fully efficient if outcome-model assumptions are

imposed at phase 1.

Example: Cox model assumes infinitely many constraints at

phase 1, and efficient two-phase estimator is known (Nan 2004,

Can J Stat) and is more efficient than calibration estimator.



Estimated weights

RRZ also note that estimating π from phase-1 data gives better

precision than using true known π . Widely regarded as a

paradox.

Estimated weights (eg logistic regression) solve

N∑
i=1

xiRi =
N∑
i=1

xipi

ie, equate observed and estimated population moments. For

discrete x this is exactly calibration, for continuous x it is

effectively equivalent.



Estimated weights

Gain of precision in calibration is not paradoxical: comes from

replaceing variance of Y with variance of residuals for a reduction

by (1− r2)– nothing to do with ’estimation’

Exactly same issue as gain of precision when adjusting random-

ized trial for baseline: can write randomized trial estimator as

calibration with counterfactuals.

Estimation error in weights does increase uncertainty, but this is

second order: for p predictors it is O(1 + p/n)

Calibration provides increased precision only when r2 is large

enough (compared to p/n).

[Judkins et al, Stat Med 26:1022-33]



Computing

calibrate() also works on two-phase design objects

Since the phase-one data are already stored in the object, there
is no need to specify population totals when calibrating.

It is necessary to specify phase=2.

This morning we had a two-phase case–control design

dccs2<-twophase(id=list(~seqno,~seqno),

strata=list(NULL,~interaction(rel,instit)),

data=nwtco, subset=~incc2)

Calibrating it to 16 strata of relapse×stage×institutional histol-
ogy:

gccs8<-calibrate(dccs2, phase=2,

formula=~interaction(rel,stage,instit))



Logistic regression

As all the phase-one data are available we can also esti-

mate sampling weights by logistic regression, as suggested by

Robins,Rotnitzky & Zhao (JASA, 1994).

Either use calibrate with calfun="rrz" or estWeights.

estWeights takes a data frame with missing values as input

and produces a corresponding two-phase design with weights

estimated by logistic regression.



Choice of auxiliaries

The other heuristic gain from the calibration viewpoint is in
choosing predictors for estimating π.

The regression formulation shows that the predictors should have
strong linear relationships with Ui(θ).

If Ui(θ) is of a form such as

ziwi(yi − µi(θ))

then zi is approximately uncorrelated with Ui

So, don’t use a variable correlated with a phase-2 predictor as
a calibration variable, use a variable correlated with the phase-2
score function.

estWeights() can take a phase-one model as an argument and use
the estimating functions from that model as calibration variables.

More detail from Norm.


	What are they?
	Estimating a total
	Auxiliary information
	Reweighting
	Calibration
	Standard errors
	Computing
	Types of calibration
	Two-phase studies
	RRZ estimators
	Estimated weights
	Computing
	Logistic regression
	Choice of auxiliaries

