
Complex survey samples in R

Thomas Lumley

R Core Development Team

and University of Washington

WSS short course — 2007–3–16

Why are surveys special?

• Probability samples come with a lot of meta-data that has

to be linked correctly to the observations, so software was

specialized

• Interesting data sets tend to be large, so hardware was

specialized

• Design-based inference literature is largely separate from rest

of statistics, doesn’t seem to have a unifying concept such

as likelihood to rationalize arbitrary choices.

In part, too, the specialized terminology has formed barriers

around the territory. At one recent conference, I heard a speaker

describe methods used in his survey with the sentence, ”We used

BRR on a PPS sample of PSU’s, with MI after NRFU”

(Sharon Lohr, American Statistician 5/2004)

Survey package

http://faculty.washington.edu/tlumley/survey/

Version 3.6-9 is current, containing approximately 6000 lines of

interpreted R code. (cf 250,000 lines of Fortran for VPLX)

Version 2.3 was published in Journal of Statistical Software.

Major changes since then are finite population corrections for

multistage sampling, calibration and generalized raking, tests

of independence in contingency tables, better tables of results,

simple two-phase designs.

Other relevant R packages: pps, sampling, sampfling, all focus

on design, in particular PPS sampling without replacment.

http://faculty.washington.edu/tlumley/survey/

Design principles

• Ease of maintenance and debugging by code reuse

• Speed and memory use not initially a priority: don’t optimize

until there are real use-cases to profile.

• Rapid release, so that bugs and other infelicities can be found

and fixed.

• Emphasize features that look like biostatistics (regression,

calibration, survival analysis)

Intended market

• Methods research (because of programming features of R)

• Teaching (because of cost, use of R in other courses)

• Secondary analysis of national surveys (regression features,

R is familiar to non-survey statisticians)

Overview

• Describing survey designs: svydesign()

• Replicate weights: svrepdesign(), as.svrepdesign

• Summary statistics: mean, total, quantiles, design effect

• Tables of summary statistics, domain estimation.

• Graphics: histograms, hexbin scatterplots, smoothers.

• Regression modelling: svyglm()

• Calibration of weights: postStratify(), calibrate()

Objects and Formulas

Collections of related information should be kept together in an

object. For surveys this means the data and the survey meta-

data.

The way to specify variables from a data frame or object in R is

a formula

~a + b + I(c < 5*d)

The survey package always uses formulas to specify variables.

Weights and probabilities

The basic estimation idea is that individuals are sampled with

known probabilities πi, so that the population total for a variable

can be estimated by

T =
n∑

i=1

1

πi
Xi

Other statistics follow from this: if the statistic on the whole

population would solve

N∑
i=1

Ui(θ) = 0

then we solve
n∑

i=1

1

πi
Ui(θ) = 0

Standard errors

Standard errors for totals follow from elementary formulas for
the variance of a sum.

Standard errors for more complicated statistics come from the
delta method. If θ̂ solves

n∑
i=1

1

πi
Ui(θ) = 0

then its variance can be estimated by

v̂ar[θ̂] = A−1BA−1

where

A =
n∑

i=1

1

πi

∂Ui(θ)

∂θ

∣∣∣∣∣∣
θ=θ̂

and B is an estimate of the variance of
n∑

i=1

1

πi
Ui(θ)

Standard errors

Another approach extends the idea of jackknife or bootstrap

resampling: evaluate the statistic on a lot of slightly different

weights and use the variability between these to estimate the

variance. (replicat{e,ion} weights)

Technical details are in the code: svyrecvar and svrVar, refer-

ences are in the help pages (Särndal, Swensson & Wretman is

the most important).

Types of designs

The calculations are correct for multistage stratified random

sampling with or without replacements.

Taylor expansion is correct for unequal probability sampling with

replacement (eg PPS with replacement). I don’t think the

replicate weights are correct in this case, but they are probably

not bad.

I am working on Horvitz–Thompson and Yates–Grundy es-

timators for more general designs (including PPS without

replacement), using the fact that the covariance matrix of

sampling indicators is often a projection times a sparse matrix.

Describing survey designs

Stratified independent sample (without replacement) of schools

dstrat <- svydesign(id=~1,strata=~stype, weights=~pw,

data=apistrat, fpc=~fpc)

• stype is a factor variable for elementary/middle/high school

• fpc is a numeric variable giving the number of schools in each

stratum. If omitted we assume sampling with replacement

• id=∼1 specifies independent sampling.

• apistrat is the data frame with all the data.

• pw contains sampling weights (1/πi). These could be omitted

since they can be computed from the population size.

Describing survey designs

> dstrat
Stratified Independent Sampling design
svydesign(id = ~1, strata = ~stype, weights = ~pw, data = apistrat,

fpc = ~fpc)
> summary(dstrat)
Stratified Independent Sampling design
svydesign(id = ~1, strata = ~stype, weights = ~pw, data = apistrat,

fpc = ~fpc)
Probabilities:

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.02262 0.02262 0.03587 0.04014 0.05339 0.06623
Stratum Sizes:

E H M
obs 100 50 50
design.PSU 100 50 50
actual.PSU 100 50 50
Population stratum sizes (PSUs):

E M H
4421 1018 755
Data variables:
[1] "cds" "stype" "name" "sname" "snum" "dname"
[7] "dnum" "cname" "cnum" "flag" "pcttest" "api00"
...

Describing survey designs

Cluster sample of school districts, using all schools within a

district.

dclus1 <- svydesign(id=~dnum, weights=~pw, data=apiclus1, fpc=~fpc)

• dnum is a (numeric) identifier for school district

• No stratification

> summary(dclus1)
1 - level Cluster Sampling design
With (15) clusters.
svydesign(id = ~dnum, weights = ~pw, data = apiclus1, fpc = ~fpc)
Probabilities:

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.02954 0.02954 0.02954 0.02954 0.02954 0.02954
Population size (PSUs): 757
Data variables:
[1] "cds" "stype" "name" "sname" "snum" "dname"
[7] "dnum" "cname" "cnum" "flag" "pcttest" "api00"

...

Describing survey designs

Two-stage sample: 40 school districts and up to 5 schools from
each

dclus2 <- svydesign(id=~dnum+snum, fpc=~fpc1+fpc2, data=apiclus2)

• dnum identifies school district, snum identifies school
• fpc1 is the number of school districts in population, fpc2 is

number of schools in the district.
• Weights are computed from fpc1 and fpc2

> summary(dclus2)
2 - level Cluster Sampling design
With (40, 126) clusters.
svydesign(id = ~dnum + snum, fpc = ~fpc1 + fpc2, data = apiclus2)
Probabilities:

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.003669 0.037740 0.052840 0.042390 0.052840 0.052840
Population size (PSUs): 757
Data variables:
[1] "cds" "stype" "name" "sname" "snum" "dname"
[7] "dnum" "cname" "cnum" "flag" "pcttest" "api00"

...

Prespecified replicate weights

svrepdesign creates an object using prespecified replicate weights.

Some survey institutions prefer using replicate weights rather

strata/cluster information for confidentiality reasons, or because

it is easier to handle calibration/post-stratification.

Unless the replicate weights are a type that R knows about (BRR,

JK1, JKn, Fay, bootstrap) it is also necessary to specify how to

scale the variance: From survey:::svrVar

meantheta <- mean(thetas[rscales > 0])

v <- sum((thetas - meantheta)^2 * rscales) * scale

Here scale is a single number (a) and rscales is a vector (bi).

For JKn scale is the finite population correction and rscales is

n/n− 1 for the stratum.

Example

California Health Interview Survey public use data files (http:

//www.chis.ucla.edu) supplies a data set with 80 sets of replicate

weights. Their documentation says

“WesVar, SUDAAN, and Stata are software packages that allow

variance estimation using replicate weights ... As of September

2005, SAS and SPSS do not contain features that allow use

of replicate weights ... There are other possibilities, like R for

utilizing replicate weights but these are not as commonly used

as other software”

rchis<-svrepdesign(chis[,-(216+(1:80))],

repweights=chis[,216+(1:80)],

weights=chis$RAKED0, combined.weights=TRUE,

scale=1, rscales=rep(1,80),type="other")

http://www.chis.ucla.edu
http://www.chis.ucla.edu

Example

Alcohol and Drug Services Study (ADSS) conducted for the Sub-

stance Abuse and Mental Health Services Administration. Data

and documentation available from the (http://www.icpsr.umich.edu/).

The data files contain 200 replicate weights that are based on

a stratified jackknife (JKn) with modifications to reduce very

large weights, account for nonresponse, and for other reasons.

Separate files contain the finite population correction factors and

the quantity we have called bi or rscales.

adss<-svrepdesign(data = adssdata, repweights = adssdata[, 782:981],

scale = 1, rscales = adssjack, type = "other",

weights = ~PH1FW0, combined.weights = TRUE, fpc=adssfpc,

fpctype="correction")

Constructing replicate weights

as.svrepdesign converts a svydesign to replicate weights. Default

is jackknife.

rclus1 <- as.svrepdesign(dclus1)

bclus1 <- as.svrepdesign(dclus1, type="bootstrap", replicates=100)

Bootstrap and jackknife replicate weights incorporate the finite-

sampling correction, BRR doesn’t.

Replicate weights

• Jackknife, leaving out one PSU (JK1, JKn)

• Bootstrap of PSUs within strata (best with large strata).

• Half-sample for designs with 2 PSUs/stratum (BRR)

Rather than leaving out PSUs we actually set the weight to zero.

If θ∗i is the estimate with the ith set of weights then

v̂ar[θ̂] = a
K∑

i=1

bi(θ
∗
i − θ̄∗)2

where a and bi depend on the weighting design.

Plackett–Burman designs

BRR splits the same in halves so that all PSUs appear in 50%

of the half-samples and all pairs of PSUs from different strata

appear together in 25% of the half-samples. [full orthogonal

balance, Plackett–Burman design, Hadamard matrix]

Under this condition the standard error of the population mean

or total is the same as if all 2nstrata half-samples were used.

The number of half-samples has to be a multiple of 4, greater

than the number of strata. Constructing the half-samples is

hard in general and trivial if the number is a power of 2. The

survey package also knows how to generate sets of 2k(p + 1)

half-samples where p is a prime and p+1 is a multiple of 4. This

gets close to the minimum possible number of half-samples in

most cases.

Plackett–Burman designs

0 50 100 150

0
50

10
0

15
0

n

M
at

rix
 s

iz
e

Actual size
Minimum possible size

Summary statistics

svymean, svytotal, svyratio, svyvar, svyquantile

All take a formula and design object as arguments, return an

object with coef, vcov, SE, cv methods.

Mean and total on factor variables give tables of cell means/totals.

Mean and total have deff argument for design effects and the

return object has a deff method.

> svymean(~api00, dclus1, deff=TRUE)
mean SE DEff

api00 644.169 23.542 9.3459
> svymean(~factor(stype),dclus1)

mean SE
factor(stype)E 0.786885 0.0463
factor(stype)H 0.076503 0.0268
factor(stype)M 0.136612 0.0296

Summary statistics

> svymean(~interaction(stype, comp.imp), dclus1)
mean SE

interaction(stype, comp.imp)E.No 0.174863 0.0260
interaction(stype, comp.imp)H.No 0.038251 0.0161
interaction(stype, comp.imp)M.No 0.060109 0.0246
interaction(stype, comp.imp)E.Yes 0.612022 0.0417
interaction(stype, comp.imp)H.Yes 0.038251 0.0161
interaction(stype, comp.imp)M.Yes 0.076503 0.0217
> svyvar(~api00, dclus1)

variance SE
api00 11183 1386.4
> svytotal(~enroll, dclus1, deff=TRUE)

total SE DEff
enroll 3404940 932235 31.311

Summary statistics

> mns <- svymean(~api00+api99,dclus1)
> mns

mean SE
api00 644.17 23.542
api99 606.98 24.225
> coef(mns)

api00 api99
644.1694 606.9781
> SE(mns)

api00 api99
23.54224 24.22504
> vcov(mns)

api00 api99
api00 554.2371 565.7856
api99 565.7856 586.8526
> cv(mns)

api00 api99
0.03654666 0.03991090

Ratio estimators

Estimating the ratio of population means/totals: svyratio takes

two formulas specifying numerator and denominator variables.

> svyratio(~api.stu, ~enroll, dclus1)
Ratio estimator: svyratio.survey.design2(~api.stu, ~enroll, dclus1)
Ratios=

enroll
api.stu 0.8497087
SEs=

enroll
api.stu 0.008386297

Ratio estimators

Ratio estimation of population total uses predict

> sep<-svyratio(~api.stu,~enroll, dstrat,separate=TRUE)
> com<-svyratio(~api.stu, ~enroll, dstrat)
> stratum.totals<-list(E=1877350, H=1013824, M=920298)
> predict(sep, total=stratum.totals)
$total

enroll
api.stu 3190022

$se
enroll

api.stu 29756.44

> predict(com, total=3811472)
$total

enroll
api.stu 3190038

$se
enroll

api.stu 29565.98

Some details

• svyratio uses the Taylor expansion std error, which has

larger unconditional but small conditional bias than the main

alternative.

• Design effects can be calculated compared to with-replacement

(DEFT) or without-replacement (DEFF) designs, without-

replacement is the default.

Quantiles

> library(survey)

> data(api)

> dclus1<-svydesign(id=~dnum, weights=~pw, data=apiclus1, fpc=~fpc)

> index<-order(apiclus1$api00)

> cdf<-cumsum(apiclus1$pw)/sum(apiclus1$pw)

> plot(apiclus1$api00[index], cdf,xlab="API", type="s")

> abline(h=0.5,col="red",lwd=2)

> points(652,0.5,pch=19,col="purple")

> abline(v=652,col="purple",lty=2,lwd=2)

Quantiles

400 500 600 700 800 900

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

API

cd
f

Quantiles

400 500 600 700 800 900

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

API

cd
f

●

Quantiles

> svymean(~I(api00>652),dclus1)

mean SE

I(api00 > 652)FALSE 0.50273 0.1069

I(api00 > 652)TRUE 0.49727 0.1069

> abline(h=0.50273,col="red",lwd=2)

> abline(h=0.50273-1.96*0.1069,col="red",lwd=2,lty=3)

> abline(h=0.50273+1.96*0.1069,col="red",lwd=2,lty=3)

Quantiles

400 500 600 700 800 900

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

API

cd
f

Quantiles

> abline(v=652,col="purple",lty=2,lwd=2)

> abline(v=564.325,col="purple",lty=3,lwd=2)

> abline(v=710.8375,col="purple",lty=3,lwd=2)

> svyquantile(~api00, dclus1, 0.5, ci = TRUE)

$quantiles

0.5

api00 652

$CIs

, , api00

0.5

(lower 564.3250

upper) 710.8375

Quantiles

400 500 600 700 800 900

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

API

cd
f

Quantiles

This approach gives asymmetric confidence intervals. A pro-

posed standard error estimator is the 95% confidence interval

length divided by 2× 1.96.

There is an option is to invert a score test (Francisco–Fuller)

but this is slower and appears to be less accurate.

The same approach to confidence intervals in estimating function

estimates has been promoted more recently by Kalbfleisch and

colleagues — the idea is the the Normal approximation should

work better on the estimating function scale since that is where

the central limit theorem is applied.

This method works with replicate weight or design information

and is the default in R.

Choice of quantile

With a reasonably complex design and a continuous variable it

is very unlikely that the equation for the pth quantile

n∑
i=1

1

πi
({xi < q} − p) = 0

will be exactly true, so we will always be in a setting analogous

to estimating the median from a sample of even size.

Hyndman and Fan (1996, TAS) describe 9 definitions of the

quantile (for iid data) involving different rules for interpolating

the order statistics to the left and right of the quantile. If the

left and right order statistics are the same the quantile is equal

to them.

Choice of quantile

svyquantile() interpolates linearly between order statistics.

I think SUDAAN interpolates linearly between unique order

statistics (ie does not distinguish between two observations with

weight w and one with weight 2w).

This appears to be done for convenience but would make sense

if the measurements were from a continuous variable rounded to

a small number of digits.

Domain estimation

The correct standard error estimate for a subpopulation that

isn’t a stratum is not just obtained by pretending that the

subpopulation was a designed survey of its own.

However, the subset function and "[" method for survey design

objects handle all these details automagically, so you can ignore

this problem.

The package test suite (tests/domain.R) verifies that subpop-

ulation means agree with the ratio estimator and regression

estimator derivations. Some more documentation is in the domain

vignette.

Note: subsets of design objects are not necessary smaller than

the whole objects.

Pretty tables

Two main types:

• totals or proportions cross-classified by multiple factors

• arbitrary statistics in subgroups

Computing over subgroups

svyby computes a statistic for subgroups specified by a set of

factor variables:

> svyby(~api99, ~stype, dclus1, svymean)
stype statistics.api99 se.api99

E E 607.7917 22.81660
H H 595.7143 41.76400
M M 608.6000 32.56064

~api99 is the variable to be analysed, ~stype is the subgroup

variable, dclus1 is the design object, svymean is the statistic to

compute.

Lots of options for eg what variance summaries to present

(mostly requests from ine.pt).

Computing over subgroups

> svyby(~api99, ~stype, dclus1, svyquantile, quantiles=0.5,ci=TRUE)
stype statistics.quantiles statistics.CIs se var

E E 615 525.6174, 674.1479 37.89113 1435.738
H H 593 428.4810, 701.0065 69.52309 4833.46
M M 611 527.5797, 675.2395 37.66903 1418.955
M M 611
> svyby(~api99, list(school.type=apiclus1$stype), dclus1, svymean)

school.type statistics.api99 se.api99
E E 607.7917 22.81660
H H 595.7143 41.76400
M M 608.6000 32.56064
> svyby(~api99+api00, ~stype, dclus1, svymean, deff=TRUE)

stype statistics.api99 statistics.api00 se.api99 se.api00 DEff.api99
E E 607.7917 648.8681 22.81660 22.36241 5.895734
H H 595.7143 618.5714 41.76400 38.02025 2.211866
M M 608.6000 631.4400 32.56064 31.60947 2.226990

DEff.api00
E 6.583674
H 2.228259
M 2.163900

Computing over subgroups

> svyby(~api99+api00, ~stype+sch.wide, dclus1, svymean, keep.var=FALSE)
stype sch.wide statistic.api99 statistic.api00

E.No E No 601.6667 596.3333
H.No H No 662.0000 659.3333
M.No M No 611.3750 606.3750
E.Yes E Yes 608.3485 653.6439
H.Yes H Yes 577.6364 607.4545
M.Yes M Yes 607.2941 643.2353

Computing over subgroups

> (a<-svyby(~enroll, ~stype, rclus1, svytotal, deff=TRUE,
vartype=c("se","cv","cvpct","var")))

stype statistics.enroll se cv.enroll cv%.enroll var DEff
E E 2109717.1 631349.4 0.2992578 29.92578 398602047550 125.039075
H H 535594.9 226716.6 0.4232987 42.32987 51400414315 4.645816
M M 759628.1 213635.5 0.2812369 28.12369 45640120138 13.014932
> deff(a)
[1] 125.039075 4.645816 13.014932
> SE(a)
[1] 631349.4 226716.6 213635.5
> cv(a)
[1] 0.2992578 0.4232987 0.2812369
> coef(a)
[1] 2109717.1 535594.9 759628.1
> svyby(~api00,~comp.imp+sch.wide,design=dclus1,svymean,

drop.empty.groups=FALSE)
comp.imp sch.wide statistics.api00 se.api00

No.No No No 608.0435 28.98769
Yes.No Yes No NA NA
No.Yes No Yes 654.0741 32.66871
Yes.Yes Yes Yes 648.4060 22.47502

Functions of estimates

svycontrast computes linear and nonlinear combinations of

estimated statistics (in the same object).

> a <- svytotal(~api00 + enroll + api99, dclus1)

> svycontrast(a, list(avg = c(0.5, 0, 0.5), diff = c(1,

0, -1)))

contrast SE

avg 3874804 873276

diff 230363 54921

> svycontrast(a, list(avg = c(api00 = 0.5, api99 = 0.5),

diff = c(api00 = 1, api99 = -1)))

contrast SE

avg 3874804 873276

diff 230363 54921

Functions of estimates

> svycontrast(a, quote(api00/api99))

nlcon SE

contrast 1.0613 0.0062

> svyratio(~api00, ~api99, dclus1)

Ratio estimator: svyratio.survey.design2(~api00, ~api99, dclus1)

Ratios=

api99

api00 1.061273

SEs=

api99

api00 0.006230831

Functions of estimates

Contrasts of arbitrary statistics across subgroups after svyby are

supported with replicate weights. Here we compare proportion

of hypertension treated by insurance status from CHIS

> a<-svyby(~I(AB30==1),~INS, denominator=~I(AB29==1),

design=rchis,svyratio, covmat=TRUE)

> a

INS statistics se

1 1 0.7124663 0.006109845

2 2 0.3548040 0.022022222

> svycontrast(a, quote(‘1‘-‘2‘))

nlcon SE

contrast 0.35766 0.0235

Contrasts of means across subgroups can always be computed

by regression.

Domain and ratio estimators

Ratio estimators of domain means agree with the result from

subsetting the design object:

> dstrat<-update(dstrat,imp=as.numeric(comp.imp=="Yes"))
> svyratio(~I(api.stu*imp),~imp,dstrat)
Ratio estimator: svyratio.survey.design2(~I(api.stu * imp), ~imp, dstrat)
Ratios=

imp
I(api.stu * imp) 439.9305
SEs=

imp
I(api.stu * imp) 19.24367
> svymean(~api.stu, subset(dstrat, comp.imp=="Yes"))

mean SE
api.stu 439.93 19.244

Formatting

svyby or svymean and svytotal with interaction will produce the

numbers, but the formatting is not pretty.

ftable provides formatting:

> d<-svyby(~api99 + api00, ~stype + sch.wide, rclus1, svymean, keep.var=TRUE,
+ vartype=c("se","cvpct"))
> round(ftable(d),1)

sch.wide No Yes
statistics.api99 statistics.api00 statistics.api99 statistics.api00

stype
E svymean 601.7 596.3 608.3 653.6

SE 70.0 64.5 23.7 22.4
cv% 11.6 10.8 3.9 3.4

H svymean 662.0 659.3 577.6 607.5
SE 40.9 37.8 57.4 54.0
cv% 6.2 5.7 9.9 8.9

M svymean 611.4 606.4 607.3 643.2
SE 48.2 48.3 49.5 49.3
cv% 7.9 8.0 8.2 7.7

Formatting

svyby knows enough to structure the table without help. For

other analyses more information is needed

> a <- svymean(~interaction(stype,comp.imp), design=dclus1, deff=TRUE)
> b <- ftable(a, rownames=list(stype=c("E","H","M"),comp.imp=c("No","Yes")))
> round(100*b,1)

stype E H M
comp.imp
No mean 17.5 3.8 6.0

SE 2.6 1.6 2.5
Deff 87.8 131.7 200.4

Yes mean 61.2 3.8 7.7
SE 4.2 1.6 2.2
Deff 137.2 131.4 124.7

Tests for two-way tables

svychisq does four variations on the Pearson χ2 test

• First- and second-order Rao–Scott corrections: first order

(statistic="Chisq") corrects the mean of Pearson’s X2,

second order (statistic="F") corrects the variance as well.

• Wald-type tests that all the interaction parameters in a

saturated log-linear model are zero. Original Koch et

al proposal is statistic="Wald", modified version for small

numbers of PSUs is statistic="adjWald".

Also works with replicate weights, where nPSU−nstrata is replaced

by the rank of the matrix of weights minus 1.

Tests for two-way tables

> svychisq(~stype+sch.wide,dclus1)

Pearson’s X^2: Rao & Scott adjustment

data: svychisq(~stype + sch.wide, dclus1)
F = 5.1934, ndf = 1.495, ddf = 20.925, p-value = 0.02175

> svychisq(~stype+sch.wide,dclus1,statistic="adjWald")

Design-based Wald test of association

data: svychisq(~stype + sch.wide, dclus1, statistic = "adjWald")
F = 2.2296, ndf = 2, ddf = 13, p-value = 0.1471

Tests for two-way tables

The actual asymptotic distribution is a linear combination of χ2
1

variables, which is not hard to compute by numerical inversion

of the characteristic function.

I plan to add this for two-way tables, but more importantly

for tests i regression models based on population estimated

deviance.

Graphics

Two difficulties in graphics: large sample size, sampling weights.

• ‘Bubble’ plots with circle area proportional to weight

• histograms, boxplots, smoothers using sample weights

• Hexagonal binning plots, estimating population number over

areas of plot

svyhist and svyboxplot do histograms and boxplots, svyplot()

does scatterplots, svysmooth() does kernel smoothing.

Graphics

svyhist(~ell, dstrat, main = "English language learners",

col = "peachpuff")

English language learners

ell

D
en

si
ty

0 20 40 60 80

0.
00

0
0.

01
0

0.
02

0
0.

03
0

Graphics

svyboxplot(enroll ~ stype, dstrat)

●

●

E H M

0
50

0
10

00
20

00
30

00

Graphics

svyplot(api00~api99, design=dclus2, style="bubble",

xlab="1999 API",ylab="2000 API")

400 500 600 700 800 900

40
0

50
0

60
0

70
0

80
0

90
0

10
00

1999 API

20
00

 A
P

I

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●
●

●

●

●

●

●

● ●

●
●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Synthetic data

A related approach is to estimate the joint empirical distribution

that is being graphed and take a simple random sample with

replacement from it.

Jittering the data may then be necessary (eg for scatterplots),

since it is very likely that multiple copies of the same point will

be included.

The graph may look different for different random samples and

will look different depending on jittering, so it may be necesssary

to do several plots and look for consistent features

Synthetic data

In the example, the jittering was U(0,25) noise: 25 is approxi-

mately the median absolute deviation of the change from 1999

to 2000 and so is a reasonable ”measurement error” variability.

A more sophisticated approach would distinguish between two

observations with weight w and one observation with weight 2w

when jittering, to preserve any true discreteness in the data (eg

digit preference in blood pressures).

Synthetic data

●
●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

500 600 700 800 900

50
0

70
0

90
0

1999 API

20
00

 A
P

I

Hexagonal binning

To handle large SRS data sets, divide plot region into hexagons

and count points in each hex.

Generalizes to complex samples by estimating population total

in each hex.

Hexagonal binning

svyplot(api00~api99, design=dstrat, style="hex",

xlab="1999 API",ylab="2000 API")

400 500 600 700 800 900

400

500

600

700

800

900

1999 API

20
00

 A
P

I

1
10
20
29
39
48
58
67
77
86
96

105
115
124
134
143
153

Counts

Hexagonal binning

1
289137
578274
867410

1156547
1445683
1734820
2023956
2313092
2602229
2891365
3180502
3469638
3758775
4047911
4337048
4626184

Counts

50 100 150 200 250 300

0
20

40
60

80

Transferrin

Ir
on

Smoothing

Extending smoothing methods to survey data is typically straight-

forward (unless you need standard errors)

R implements a local linear smoother with Gaussian kernel

weights, based on Matt Wand’s KernSmooth package

That is, the estimated mean of Y at x = x0 is obtained by fitting

a straight line to the data, with weights proportional to

wi =
1

πi
φ((xi = x0)/h)

where h is the smoothing bandwidth.

This takes n2 computations for n points so the code actually lays

down a discrete grid, assigns each point pro rata to the nearest

two grid points, and fits with these grid points rather than xi

and yi.

Smoothing

pdf("~/TEACHING/survey/iron-smooth.pdf",height=4,width=6)

plot(svysmooth(iron~trnsfern,design=dhanes,bandwidth=10))

lines(svysmooth(iron~trnsfern,design=subset(dhanes,sex=="Female"),

bandwidth=10),col="deeppink",lwd=3)

lines(svysmooth(iron~trnsfern,design=subset(dhanes,sex=="Male"),

bandwidth=10),col="royalblue",lwd=3)

legend("topleft",lwd=3,col=c("black","royalblue","deeppink"),

legend=c("All","Male","Female"),bty="n")

dev.off()

Smoothing

0 20 40 60 80

50
10

0
15

0
20

0
25

0

trnsfern

iro
n

All
Male
Female

Smoothing

plot(svysmooth(~iron,design=dhanes,bandwidth=50))

lines(svysmooth(~iron,design=subset(dhanes,sex=="Male"),

bandwidth=50),lwd=3,col="royalblue")

lines(svysmooth(~iron,design=subset(dhanes,sex=="Female"),

bandwidth=50),lwd=3,col="deeppink")

legend("topright",lwd=3,col=c("black","royalblue","deeppink"),

legend=c("All","Male","Female"),bty="n")

Smoothing

50 100 150 200 250 300

0.
00

0
0.

00
4

iron

D
en

si
ty

All
Male
Female

Regression quantiles

Other smoothing methods that allow weights can also be used,

eg regression quantiles based on splines (quantreg package).

0 20 40 60 80

50
15

0
25

0

Serum Transferrin

S
er

um
 Ir

on

Regression models

• svyglm for linear and generalized linear models

• svycoxph for Cox model (no std errors on survival curves yet)

Some other models, eg censored parametric regression mod-

els, could be fitted with svymle (svydesign objects only) or

withReplicates (replicate weight designs only).

Regression and domain estimators

Academic Performance Index in schools with more or less than
20% ”English language learners”

> svyby(~api00,~I(ell>20), dclus1,svymean)
I(ell > 20) statistics.api00 se.api00

FALSE FALSE 717.9661 15.53905
TRUE TRUE 609.0565 25.55300

> summary(svyglm(api00~I(ell>20), dclus1))
Call:
svyglm(api00 ~ I(ell > 20), dclus1)

Survey design:
svydesign(id = ~dnum, weights = ~pw, data = apiclus1, fpc = ~fpc)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 717.97 15.54 46.20 8.33e-16 ***
I(ell > 20)TRUE -108.91 19.48 -5.59 8.78e-05 ***

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

(Dispersion parameter for gaussian family taken to be 8577.366)

Regression and domain estimators

> summary(svyglm(api00~I(ell>20)+0, dclus1))

Call:
svyglm(api00 ~ I(ell > 20) + 0, dclus1)

Survey design:
svydesign(id = ~dnum, weights = ~pw, data = apiclus1, fpc = ~fpc)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

I(ell > 20)FALSE 717.97 15.54 46.20 8.33e-16 ***
I(ell > 20)TRUE 609.06 25.55 23.84 4.11e-12 ***

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

(Dispersion parameter for gaussian family taken to be 8577.366)

Number of Fisher Scoring iterations: 2

Logistic regression

Do school type and socioeconomic variables predict attaining

school-wide performance target?

> summary(svyglm(sch.wide~stype+ell+mobility,dclus1,
family=quasibinomial))

Call:
svyglm(sch.wide ~ stype + ell + mobility, dclus1,

family = quasibinomial)

Survey design:
svydesign(id = ~dnum, weights = ~pw, data = apiclus1, fpc = ~fpc)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.057e+00 4.064e-01 5.062 0.000491 ***
stypeH -9.291e-01 6.886e-01 -1.349 0.207026
stypeM -1.571e+00 6.167e-01 -2.547 0.029009 *
ell 1.209e-02 1.111e-02 1.089 0.301698
mobility -8.177e-05 1.673e-02 -0.005 0.996195

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Tests

Likelihood ratio tests are not available, so multi-coefficient tests

have to use the Wald method. regTermTest() packages this.

> model <- svyglm(sch.wide~stype+ell+mobility,dclus1, family=quasibinomial)

> regTermTest(model, ~stype)
Wald test for stype
in svyglm(sch.wide ~ stype + ell + mobility, dclus1, family = quasibinomial)

Chisq = 6.638399 on 2 df: p= 0.036182

> regTermTest(model, ~ell+mobility)
Wald test for ell mobility
in svyglm(sch.wide ~ stype + ell + mobility, dclus1, family = quasibinomial)

Chisq = 1.329623 on 2 df: p= 0.51437

Cox model

The Cox proportional hazards model is the most popular model

for time-to-event in biostatistics. Here we use a two-phase design

in sampling from a cohort that is in turn a simple random sample

from a large population.

Event is relapse in Wilm’s Tumour: edrel is observation time,

rel is relapse indicator

age is known for everyone, but histol is determined from stored

samples for everyone who relapses and a stratified random sample

of others. [Case–cohort design]

We use twophase() to specify the two-phase study design: like

svydesign() but two of everything.

Cox model

> library("survival")
Loading required package: splines
> data(nwtco)
> dcchs<-twophase(id=list(~seqno,~seqno), strata=list(NULL,~rel),
+ subset=~I(in.subcohort | rel), data=nwtco)
> svycoxph(Surv(edrel,rel)~factor(stage)+factor(histol)+I(age/12), design=dcchs)
Call:
svycoxph.survey.design(formula = Surv(edrel, rel) ~ factor(stage) +

factor(histol) + I(age/12), design = dcchs)

coef exp(coef) se(coef) z p
factor(stage)2 0.6927 2.00 0.163 4.25 2.1e-05
factor(stage)3 0.6269 1.87 0.168 3.73 1.9e-04
factor(stage)4 1.2995 3.67 0.189 6.88 6.1e-12
factor(histol)2 1.4583 4.30 0.145 10.02 0.0e+00
I(age/12) 0.0461 1.05 0.023 2.00 4.5e-02

Two-phase designs

The twophase() function constructs two-phase design objects.

Two-phase designs are currently limited to two cases:

• Simple or stratified sampling of individuals at both phases

• Cluster sampling at phase 1 with every cluster represented

at phase 2.

The biostatistics applications are typically simple random sam-

pling at phase 1 with stratification at phase 2.

Allowing arbitrary multiphase designs would still be nice and is a

major reason for investigating sparse-matrix representations.

Calibration

Calibration adjusts the survey weights so that the estimated

population total for a variable exactly matches the known true

value.

The class of calibration estimators is the same as the Robins,

Rotnitzky & Zhao (1994) incomplete data estimators for the

nonparametric model, and so contains the efficient nonparamet-

ric estimator.

Simplest version is post-stratification: adjust the weights so that

a categorical variable matches the population counts. Recovers

most of the information lost by not stratifying the sampling.

postStratify takes a design, a formula, and a data frame or table

giving population totals.

Post-stratification

> svymean(~api00, dclus1)
mean SE

api00 644.17 26.329
> svytotal(~enroll, dclus1)

mean SE
enroll 3404940 932235
>
> pop.types <- data.frame(stype=c("E","H","M"), Freq=c(4421,755,1018))
> rclus1p<-postStratify(rclus1, ~stype, pop.types)
> summary(rclus1p)
Call: postStratify(rclus1, ~stype, pop.types)
Unstratified cluster jacknife (JK1) with 15 replicates.
Variables:
[1] "cds" "stype" "name" "sname" "snum" "dname"
[7] "dnum" "cname" "cnum" "flag" "pcttest" "api00"

...

Post-stratification

> svymean(~api00, rclus1p)
mean SE

api00 642.31 26.45
> svytotal(~enroll, rclus1p)

mean SE
enroll 3680893 346014
> svytotal(~stype,rclus1p)

mean SE
stypeE 4421 4.685e-12
stypeH 755 1.719e-13
stypeM 1018 2.877e-13

Raking

With population totals for two categorical variables but not

the joint distribution, alternately post-stratify on each one until

convergence — raking.

rake takes a design, a list of formulas, and a list of data frames

or tables giving population totals.

> pop.types <- data.frame(stype=c("E","H","M"), Freq=c(4421,755,1018))
> pop.schwide <- data.frame(sch.wide=c("No","Yes"), Freq=c(1072,5122))
> dclus1r<-rake(dclus1, list(~stype,~sch.wide), list(pop.types, pop.schwide))
>
> svymean(~api00, dclus1r)

mean SE
api00 641.23 23.739
> svytotal(~enroll, dclus1r)

total SE
enroll 3647300 399094

Calibration

Regression calibration adjusts weights to match the totals of

multiple variables by least squares

Generalized raking extends to iterative least squares adjustment,

including raking as a special case.

All done by calibrate()

calibrate()

• design to be calibrated

• formula specifying calibration variables

• population vector specifying totals (as column totals of

design matrix generated by formula)

• aggregate.stage optional level of sampling where weights

must be constant within sampling units, or aggregate.index

for replicate weight designs

• calfun is "linear", "logit", "raking"

• bounds are bounds for weights: optional except in logit

calibrate()

> pop.totals<-c(‘(Intercept)‘=6194, stypeH=755, stypeM=1018)
>
> help(calibrate)
> (dclus1g3 <- calibrate(dclus1, ~stype+api99, c(pop.totals, api99=3914069)))
1 - level Cluster Sampling design
With (15) clusters.
calibrate(dclus1, ~stype + api99, c(pop.totals, api99 = 3914069))
>
> svymean(~api00, dclus1g3)

mean SE
api00 665.31 3.4418
> svytotal(~enroll, dclus1g3)

total SE
enroll 3638487 385524
> svytotal(~stype, dclus1g3)

total SE
stypeE 4421 3.373e-14
stypeH 755 1.368e-14
stypeM 1018 2.609e-14

calibrate()

Logistic calibration, which is popular in Europe, uses calfun="logit"

> (dclus1g3d <- calibrate(dclus1, ~stype+api99, c(pop.totals,
api99=3914069), calfun="logit",bounds=c(0.5,2.5)))

1 - level Cluster Sampling design
With (15) clusters.
calibrate(dclus1, ~stype + api99, c(pop.totals, api99 = 3914069),

calfun = "logit", bounds = c(0.5, 2.5))
> range(weights(dclus1g3d)/weights(dclus1))
[1] 0.5943692 1.9358791
> svytotal(~enroll, dclus1g3d)

total SE
enroll 3624254 385446
> svymean(~api00, dclus1g3d)

mean SE
api00 665.43 3.4325

Calibration and ratio

For linear calibration we can specify the variance as a linear

combination of covariates in the working linear regression model.

With a single covariate this can reproduce the ratio estimator of

the total.

> pop<-3811472

> dstratg1<-calibrate(dstrat,~enroll-1, pop, variance=1)

> svytotal(~api.stu, dstratg1)

total SE

api.stu 3190038 29566

Two-phase calibration

Calibration the second phase of a two-phase design can give

useful gains in information. Also useful as a way of handling

missing data

In Wilm’s Tumour example, calibrate on disease stage and local

hospital histology classification

Two-phase calibration

> gcchs<-calibrate(dcchs, ~interaction(rel, instit, stage), phase=2)
> svycoxph(Surv(edrel,rel)~factor(stage)+factor(histol)+I(age/12),

design=gcchs)
Call:
svycoxph.survey.design(formula = Surv(edrel, rel) ~ factor(stage) +

factor(histol) + I(age/12), design = gcchs)

coef exp(coef) se(coef) z p
factor(stage)2 0.658 1.93 0.1352 4.86 1.1e-06
factor(stage)3 0.800 2.23 0.1356 5.90 3.6e-09
factor(stage)4 1.297 3.66 0.1522 8.52 0.0e+00
factor(histol)2 1.511 4.53 0.1287 11.74 0.0e+00
I(age/12) 0.037 1.04 0.0235 1.58 1.2e-01

Likelihood ratio test=NA on 5 df, p=NA n= 1154

Missing data

estWeights constructs a calibrated two-phase design from a data

frame with missing data on some variables

> data(airquality)
>
> ## ignoring missingness, using model-based standard error
> summary(lm(log(Ozone)~Temp+Wind, data=airquality))

Call:
lm(formula = log(Ozone) ~ Temp + Wind, data = airquality)

Residuals:
Min 1Q Median 3Q Max

-2.34415 -0.25774 0.03003 0.35048 1.18640

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.531932 0.608901 -0.874 0.38419
Temp 0.057384 0.006455 8.889 1.13e-14 ***
Wind -0.052534 0.017128 -3.067 0.00271 **

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Missing data

> ## Without covariates to predict missingness we get
> ## same point estimates, but different (sandwich) standard errors
> daq<-estWeights(airquality, formula=~1,subset=~I(!is.na(Ozone)))
> summary(svyglm(log(Ozone)~Temp+Wind,design=daq))

Call:
svyglm(log(Ozone) ~ Temp + Wind, design = daq)

Survey design:
estWeights(airquality, formula = ~1, subset = ~I(!is.na(Ozone)))

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.531932 0.833602 -0.638 0.5247
Temp 0.057384 0.008453 6.789 5.51e-10 ***
Wind -0.052534 0.020330 -2.584 0.0110 *

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

(Dispersion parameter for gaussian family taken to be 0.3130098)

Number of Fisher Scoring iterations: 2

Missing data

> ## Reweighting based on weather, month
> d2aq<-estWeights(airquality, formula=~Temp+Wind+Month,
+ subset=~I(!is.na(Ozone)))
> summary(svyglm(log(Ozone)~Temp+Wind,design=d2aq))

Call:
svyglm(log(Ozone) ~ Temp + Wind, design = d2aq)

Survey design:
estWeights(airquality, formula = ~Temp + Wind + Month,

subset = ~I(!is.na(Ozone)))

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.577759 0.812118 -0.711 0.4783
Temp 0.057689 0.008213 7.024 1.72e-10 ***
Wind -0.048750 0.019729 -2.471 0.0150 *

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

(Dispersion parameter for gaussian family taken to be 0.3232150)

Number of Fisher Scoring iterations: 2

Simple simulations

One benefit of incorporating survey features into R is the

availability of the rest of R for simulations.

For example, we can compare the default confidence interval

for quantiles to the alternative interval.type="score", which

chooses the confidence interval endpoints [ml, mu] so that a test

of m == ml just rejects at the α/2 level. (Francisco & Fuller,

1991, Ann Stat; Binder, 1991, Proc ASA SRMS).

The analogous strategy works well in simple random simples for

the binomial mean, so we might expect it to do better than the

default method.

Simple simulations

To get a variety of simulation conditions we will look at the

10th, 25th, 50th, 75th and 90th percentiles of 1999 API based

on stratified samples.

apipop$stratsize <- ave(apipop$snum, apipop$stype, FUN=length)

truth<-quantile(apipop$api99, probs=c(0.1,0.25,0.5,0.75,0.9))

one.sample<-function(strats=c(100,50,50)) {
E <- sample(which(apipop$stype=="E"),size=strats[1])
M <- sample(which(apipop$stype=="M"),size=strats[2])
H <- sample(which(apipop$stype=="H"),size=strats[3])
svydesign(id=~1, strat=~stype, data=apipop[c(E,M,H),],

fpc=~stratsize)
}

Simple simulations

one.result<-function(design){
qwald <- svyquantile(~api99, design,

quantiles=c(0.1,0.25,0.5,0.75,0.9),
ci=TRUE)$CIs

qscore <- svyquantile(~api99, design,
quantiles=c(0.1,0.25,0.5,0.75,0.9),
ci=TRUE, interval.type="score")$CIs

wald.covers <- (qwald[1,,] < truth) & (qwald[2,,] > truth)
score.covers <- (qscore[1,,] < truth) & (qscore[2,,] > truth)
c(wald.covers, score.covers)
}

Simple simulations

Now we test the function and work out how long a simulation

will take

> system.time(results <- replicate(2 , one.result(one.sample())))
[1] 2.278 0.093 2.372 0.000 0.000
> results

[,1] [,2]
0.1 TRUE TRUE
0.25 TRUE TRUE
0.5 TRUE TRUE
0.75 TRUE TRUE
0.9 TRUE TRUE
0.1 TRUE TRUE
0.25 TRUE TRUE
0.5 TRUE TRUE
0.75 TRUE TRUE
0.9 TRUE TRUE
> system.time(results <- replicate(200 , one.result(one.sample())))
[1] 241.447 9.522 251.034 0.000 0.000

> round(rowMeans(results)*100)
0.1 0.25 0.5 0.75 0.9 0.1 0.25 0.5 0.75 0.9
97 93 90 96 97 95 94 90 96 96

Simple simulations

> system.time(results2 <- replicate(500 , one.result(one.sample())))
[1] 614.744 25.341 646.318 0.000 0.000

> a<-rowMeans(cbind(results,results2))
> round(a*100)
0.1 0.25 0.5 0.75 0.9 0.1 0.25 0.5 0.75 0.9
96 95 94 94 96 94 95 94 94 95

Example: case-control

Compare maximum likelihood analysis of case-control study to

design-based analysis in estimating superpopulation parameters

population<-data.frame(x=rnorm(10000))
expit <- function(eta) exp(eta)/(1+exp(eta))

population$y<- rbinom(10000, 1, expit(population$x-4))
population$wt<-ifelse(population$y==1, 1,(10000-sum(population$y))/600)

one.sample<-function(){
cases<-which(population$y==1)
controls<-sample(which(population$y==0),600)
population[c(cases,controls),]
}

mle<-function(sample) coef(glm(y~x, data=sample, family=binomial()))

svy<-function(sample){
design<-svydesign(id=~1,strat=~y, weight=~wt, data=sample)
coef(svyglm(y~x, design=design, family=quasibinomial()))
}

Example: case-control

Testing gives plausible results, and 10 replicates takes about 1

second

> replicate(3, {d<-one.sample(); c(mle(d), svy(d))})

[,1] [,2] [,3]

(Intercept) -1.1953152 -1.1959160 -1.1827224

x 0.8862800 0.8984955 0.8236619

(Intercept) -3.9981844 -3.9920772 -3.9812051

x 0.9140028 0.9135195 0.8405922

Example: case-control

> results<-replicate(1000, {d<-one.sample(); c(mle(d), svy(d))})

> apply(results,1,median)

(Intercept) x (Intercept) x

-1.1912635 0.8705304 -3.9820481 0.8724667

> apply(results,1,mad)

(Intercept) x (Intercept) x

0.01284982 0.05258391 0.02755323 0.07461405

> round(apply(results,1,median)-c(-4,1), 2)

(Intercept) x (Intercept) x

2.81 -0.13 0.02 -0.13

> round(apply(results,1,mad), 2)

(Intercept) x (Intercept) x

0.01 0.05 0.03 0.07

As expected in this correctly specified model, the MLE is more
efficient for the slope but biased for the intercept. We can easily
look at misspecified models by changing how y is generated.

Wishlist

Many features of the survey package result from requests from

unsatisfied users.

For new methods the most important information is a reference

that gives sufficient detail for implementation. A data set is nice

but not critical.

For slowness/memory problems a data set is vital so I can

actually measure the time and memory use. Optimization

without profiling is like estimating population totals from a

convenience sample. It doesn’t have to be a real data set, but it

does have to be slow for the same reasons as the real data set.

	Why are surveys special?
	
	Survey package
	Design principles
	Intended market
	Overview
	Objects and Formulas
	Weights and probabilities
	Standard errors
	Types of designs
	Describing survey designs
	Prespecified replicate weights
	Example
	Example
	Constructing replicate weights
	Replicate weights
	Plackett--Burman designs
	Summary statistics
	Ratio estimators
	Some details
	Quantiles
	Choice of quantile
	Domain estimation
	Pretty tables
	Computing over subgroups
	Functions of estimates
	Domain and ratio estimators
	Formatting
	Tests for two-way tables
	Graphics
	Synthetic data
	Hexagonal binning
	Smoothing
	Regression quantiles
	Regression models
	Regression and domain estimators
	Logistic regression
	Tests
	Cox model
	Two-phase designs
	Calibration
	Post-stratification
	Raking
	Calibration
	calibrate()
	Calibration and ratio
	Two-phase calibration
	Missing data
	Simple simulations
	Example: case-control
	Wishlist

