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Under iid sampling, formulas for the standard errors for the survival curve Ŝ(t) in a one-
sample problem or the predicted curve Ŝ(t; z, β̂) in a proportional hazards model simplify
because the cumulative hazard Λ(t) is the compensator of the event counting process N(t),
so that N − Λ is a (local) martingale. These simplifications are not present under more
general sampling schemes.

This note gives computational formulas for the one-sample and regression estimators
of the survival curve under arbitrary finite-population sampling, and under two-phase sub-
sampling, and with calibration of weights. The sample design enters only in the estimation
of population totals, so the formulas could readily be adapted to other probability sampling
designs. The basic approach follows that of Williams (1995) for the one-sample problem
under independent and identically distributed sampling of clusters from an infinite popu-
lation or superpopulation. Substantially more computation is required for general designs,
but these computations are feasible even in 32-bit R for a few thousand observations.

1 Estimation of totals in finite population sampling.

In single-phase finite-population sampling each individual in the population is sampled
with non-zero probability πi = E[Ri], and these probabilities are known for individuals in
the sample. The pairwise sampling probabilities πij = E[RiRj ] are also non-zero, and are
known for individuals in the sample. The Horvitz–Thompson unbiased estimator of the
population total of a variable X is

T̂X =
∑
i:Ri=1

1
πi
Xi ≡

∑
i:Ri=1

X̌i

and an unbiased estimator of its variance is

v̂ar
[
T̂X

]
=

∑
i,j:RiRj=1

XiXj

πij
− Xi

πi

Xj

πj
.

In two-phase sampling a phase-one sample is taken with sampling probabilities π1,i and
pairwise probabilities π1,ij . Some variables are measured on this sample, then a phase-two
subsample is taken from this sample with probabilities π2|1,i and π2|1,ij that may depend
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on measured values in the entire phase-one sample. The values π∗i = π1,iπ2|1,i are not
the marginal sampling probabilities πi for individuals; πi would be the average of π∗i over
all possible phase-one samples that include element i and so is typically not available.
However, π∗i and the pairwise values π∗ij = π1,ijπ2|1,ij can be used for estimation in the
same way as the marginal sampling probabilities (Särndal et al, 1992), so that

T̂X =
∑
i:Ri=1

1
π∗i
Xi ≡

∑
i:Ri=1

X̌i

is unbiased for the population total of X and its variance can be estimated by

v̂ar
[
T̂X

]
=

∑
i,j:RiRj=1

XiXj

π∗ij
− Xi

π∗i

Xj

π∗j
.

If the population total is known for some variable(s) Z, calibration of weights replaces
the sampling weights 1/πi by calibrated weights gi/πi chosen so that the estimated total
matches the known value:

TZ =
M∑
i=1

Zi =
∑
i:Ri=1

gi
πi
Zi = T̂Z .

The standard error of an estimated total after calibration is

v̂ar
[
T̂X

]
=

∑
i,j:RiRj=1

rirjgigj
πij

− rigi
πi

rjgj
πj

.

where ri is the residual from projecting Xi on to the space spanned by the calibration
variables Z. A two-phase sample can be calibrated based on known population totals or
on known phase-one totals, giving analogous formulas for the standard error (Särndal et
al, 1992).

2 One-sample survival curve estimation

dNi(t) counts the events for person i, Yi(t) is the at-risk process for person i. The popu-
lation totals of these are

d̄N(t) =
M∑
i=1

dNi(t)

and

Ȳ (t) =
M∑
i=1

Yi(t).
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Using the appropriate estimators from the previous section we can compute unbiased esti-
mators dN̂(t) and Ŷ (t) at every time t where dN̂(t) > 0, and estimate the variances, and
the covariances of N̂ and Ŷ at any finite set of times.

The population cumulative hazard function is

Λ(t) =
∫ t

0

dN̄(t)
Ȳ (t)

The cumulative hazard can be estimated by plugging in the Horvitz–Thompson estimators
for N̄ and Ȳ :

Λ̂(t) =
∫ t

0

dN̂(t)
Ŷ (t)

.

The estimated cumulative hazard is a step function with jumps at the observed event times.
The variance and covariance of the steps can be estimated by the delta method:

ĉov
[
dΛ̂(t), dΛ̂(s)

]
=

ĉov
[
dN̂(t), dN̂(s)

]
Ŷ (t)Ŷ (s)

+
dN̂(t)dN̂(s)ĉov

[
Ŷ (t), Ŷ (s)

]
Ŷ 2(t)Ŷ 2(s)

−
dN̂(s)ĉov

[
dN̂(t), Ŷ (s)

]
Ŷ (t)Ŷ (s)2

−
dN̂(t)ĉov

[
dN̂(s), Ŷ (t)

]
Ŷ (s)Ŷ (t)2

.

An estimator of the variance of the cumulative hazard estimator is then

v̂ar
[
Λ̂(t)

]
=

∑
s,s′≤t

ĉov
[
dΛ̂(s), dΛ̂(s′)

]
By separating the finite-population estimation of N̄(t) and Ȳ (t) from the delta-method

computations it is straightforward to obtain estimates under a wide range of one-phase
and two-phase sampling designs.

Under iid sampling the standard errors from this formula agree closely with the martingale-
based formula that includes only the terms in var[dN̂(t)], and under two-phase subsampling
they agree fairly well with the nested.km() function of Katki (2009).

3 The Cox model

The model is
dΛ(t;x, β) = exβdΛ0(t)

and it is fitted by solving the sampling-weighted partial score equations of Binder (1991).
For computational convenience, the covariates are centered at the sampling-weighted mean,
so Λ0 is the cumulative hazard at the mean covariate value.
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The estimated baseline survival curve follows Breslow’s proposal for the Cox model

dΛ̂0(t) =
∑n

i=1 dNi(t)/πi∑n
j=1 e

xj β̂Yj(t)/πj
.

We write dN̂ for the numerator and Ŷ for the denominator of this expression and compute
them as estimated population totals as for the one-sample estimator. With these definitions
we can write the variance estimator as the sum of four terms. The first term V1(t) in the
variance is the same expression as the one-sample variance (but using the new definition
of Ŷ ).

The second term in the variance depends on the variance Vβ of β̂. Its increment at
time t is

dV2(t) = dΛ̂0(t)2E(t)V̂βE(t)T

where E(t) is the weighted average covariate over the risk set

E(t) =
∑n

i=1 Yixie
xiβ̂/πi∑n

i=1 Yie
xiβ̂/πi

The sum of the first two terms v1(t) + v2(t) is the variance of dΛ̂0 conditional on the
centering value for the covariates.

The remaining two terms depend on the value x0 for predicting survival.

dV3(t) = Λ̂0(t)x0e
x0βV̂βx

T
0 e

x0βΛ̂0(t)

and
dV4(t) = −2Λ̂0(t)x0e

x0βV̂βE(t)TdΛ̂0(t)ex0β

The estimated variance of dΛ̂(t;x) is given by integrating the variances of the increments
and adding them

v̂ar
[
Λ̂(t;x)

]
=

∑
s≤t

dV1(s) + dV2(s) + dV3(s) + dV4(s)

and the variance of the estimated survival function is then

v̂ar
[
Ŝ(t;x)

]
= v̂ar

[
Λ̂(t;x)

]
Ŝ(t;x)2

It would be possible to combine V2, V3, V4 into a single term in E(t)−x0, as Tsiatis did,
but keeping them separate allows more computations to be shared across different values
of x0.
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4 Notes

The Cox model estimator does not assume that the model is true, and so even under iid
sampling differs from the standard martingale-based estimator of Tsiatis (1981). When
data are simulated from a proportional hazards model the agreement seems to be very
good.

Duplicating a data set to give clusters of two identical observations should give the
same standard error estimate, and does.
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