
Sparse matrix representations

for the Horvitz–Thompson estimator

Thomas Lumley

May 17, 2009

Let Ri be the sampling indicator, E[Ri] = πi, E[RiRj] = πij , x̌i = xi/πi, and write the
covariance of the sampling indicators as

∆ij = cov[Ri, Rj] = πij − πiπj

∆̌ij =
∆ij

πij
= 1− πiπj

πij
.

The Horvitz–Thompson estimator is

σ̂2 = x̌∆̌x̌T

with computation time proportional to the number of entries of ∆̌. After calibration the
formula is

σ̂2 = (gř)∆̌(gř)T ,

where g is the calibration weight and r the calibration residual.
For cluster sampling from a stratum with n clusters, ∆̌ij = (1 − πi) for (i, j) in the

same cluster and ∆̌ij = −(1 − πi)/(nh − 1) for (i, j) in different clusters. Under sampling
with replacement we simply set the between-cluster terms to zero. For stratified sampling
∆̌ is zero for observations in different strata.

Under multistage sampling

1− ∆̌ = (1− ∆̌(1))(1− ∆̌2|1)

so
∆̌ = ∆̌(1) + ∆̌(2|1) − ∆̌(1)∆̌(2|1).

It is easy to construct ∆̌ recursively, using a similar algorithm to that used in computing
the Horvitz–Thompson estimator.

This is also true for multi-phase sampling if we work with the observable probabilities
π∗i = π1i × π2|phase 1,i

1− ˇ̌∆
∗

= (1− ∆̌(1))(1− ∆̌2|phase 1)

1

so
ˇ̌∆
∗

= ∆̌(1) + ∆̌(2|phase 1) − ∆̌(1)∆̌(2|phase 1)

The entries of ∆̌(1) corresponding to observations that are not in phase 2 do not need to
be computed.

The reason for choosing this representation of the joint sampling probabilities is that
∆̌ij = 0 when Ri and Rj are independent. In particular, the matrix ∆̌ will be sparse when
the first stage or phase of sampling is either with-replacement or highly stratified. With
a sparse-matrix representation such as those provided by the Matrix package, storage and
computation time will both be proportional to the number of non-zero entries of ∆̌. Under
general PPS or adaptive sampling there will be no saving in space or time, but there is
still a gain in ease of programming.

In version 3.15, this algorithm is used for two-phase designs, allowing multistage sam-
pling at each phase. The function Dcheck_multi computes ∆̌2 for phase 2 using the
recursive formulation, and Dcheck_multi_subset computes the subset of ∆̌1 for the phase
1 design, for observations that end up in phase 2. On an ordinary laptop computer the
computations are feasible for designs where the second phase has a few thousand observa-
tions.

In future versions this approach may be used to allow exact computation of the Horvitz–
Thompson and Yates–Grundy estimators for PPS designs, and various approximations, and
perhaps to support adaptive sampling.

2

