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What are R and S-PLUS?

e S is a system for interactive data analysis. It has always
been designed with interactive use in mind and was con-
sciously designed to blur the distinction between users and
programmers

e S is a high-level programming language, with similarities
to Scheme and Python. It is a good system for rapid
development of statistical applications.

e R is a free implementation of a dialect of the S language. S-
PLUS is a commercial system (now owned by TIBCO) based
on Bell Labs’ S, which was developed by John Chambers and
colleagues



wWhy not S7?

R (and S) are accused of being slow, memory-hungry, and able
to handle only small data sets.

This is completely true.

Fortunately, computers are fast and have lots of memory. Data
sets with a few tens of thousands of observations can be handled
on cheap laptops with 1Gb memory. Multicore servers with 32Gb
or more to handle millions of observations now start at about
$6000

Tools for interfacing R with databases allow very large data sets,
but this isn’'t transparent to the user.



Why not R?

21 CFR 11, Basel 2, and similar regulatory guidelines require
tedious effort to document and verify things. Doing this for
another system is unappealing (although not intrinsically harder
than for commercial software).

Although R is free, commercial support is still expensive and the
companies doing it for R are relatively new.

R updates too often: R users should update their version at least
annually, although there is no difficulty in keeping old versions
around as well.



How similar are R and S-PLUS?

e For basic command-line data analysis they are very similar

e Most programs written in one dialect can be translated
straightforwardly to the other (translating to R is easier than
translating to S-PLUS)

e Most large programs will need some translation

e R has a very successful package system for distributing code
and data.



R QUIs

Not GUIs for statistics, but for files/scripts/windows etc

e built-in: Windows, Mac

e cross-platform: JGR (http://www.rosudo.org/JGR), Emacs/ESS
(http://ess.r-project.org).


http://www.rosudo.org/JGR
http://ess.r-project.org
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Reading data

e [ext files

e Stata datasets

e \Web pages

e (Databases)

Much more information is in the Data Import/Export manual.



Reading text data

T he easiest format has variable names in the first row

case id gender deg yrdeg field startyr year rank admin

1 1 F Other 92 Other 95 95 Assist o)
2 2 M Other 91 Other 94 94 Assist o)
3 2 M Other 91 Other 94 95 Assist o)
4 4 M PhD 96 Other 95 95 Assist o)

and fields separated by spaces. In R, use
salary <- read.table("salary.txt", header=TRUE)

to read the data from the file salary.txt into the data frame

salary.



Syntax notes

e Spaces in commands don’'t matter (except for readability),
but Capitalisation Does Matter.

e TRUE (and FALSE) are logical constants

e Unlike many systems, R does not distinguish between com-
mands that do something and commands that compute a
value. Everything is a function: ie returns a value.

e Arguments to functions can be named (header=TRUE) or
unnamed ("salary.txt")

e A whole data set (called a data frame is stored in a variable
(salary), sO more than one dataset can be available at the
same time.



Reading text data

Sometimes columns are separated by commas (or tabs)
Ozone,Solar.R,Wind, Temp,Month,Day

41,190,7.4,67,5,1

36,118,8,72,5,2

12,149,12.6,74,5,3

18,313,11.5,62,5,4

NA,NA,14.3,56,5,5

Use

ozone <- read.table("ozone.csv", header=TRUE, sep=",")

or

ozone <- read.csv("ozone.csv")



Syntax notes

e Functions can have optional arguments (sep wasn't used the
first time). Use help(read.table) for a complete description
of the function and all the arguments.

e [ here's more than one way to do it.

e NA is the code for missing data. Think of it as “Don’t
Know"”. R handles it sensibly in computations: eg 1+NA,
NA & FALSE, NA & TRUE. You cannot test temp==NA (Is
temperature equal to some number I don't know?), so there
is a function is.na().



Reading text data

Sometime the variable names aren’t included

1 0.2 115 90 1 3 63 42 yes
2 0.7 193 90 3 1 61 48 yes
3 0.2 58 90 1 3 63 40 yes
4 0.2 5 80 2 3 65 75 yes
5 0.2 8.5 90 1 2 64 30 yes

and you have to supply them

psa <- read.table("psa.txt", col.names=c("ptid","nadirpsa",
llpretxpsall , "psll , IleS" , llgrade n , n age n ,
"obstime","inrem"))

or
psa <- read.table("psa.txt")

names (psa) <- c("ptid","nadirpsa","pretxpsa", "ps",
"bss","grade","age","obstime","inrem"))



Syntax notes

e Assigning a single vector (or anything else) to a variable uses
the same syntax as assigning a whole data frame.

e c() is a function that makes a single vector from its
arguments.

e names IS a function that accesses the variable names of a data
frame

e Some functions (such as names) can be used on the LHS of
an assignment.



Fixed-format data

Two functions read.fwf and read.fortran read fixed-format data.

i1.3<-read.fortran("sipp87x.dat",c("£1.0","£9.0",
"f2.0","f3.0", "4f1.0", "15f1.0",
"2f12.7", "£1.0","f2.0" "2f1.0",
"f2.0", "15f1.0", "15f2.0",
"15f1.0","4£2.0", "4f1.0","4f1.0",
"15f1.0","4f8.0","4f7.0","4f8.0",

"4f5.0","15f1.0"), col.names=il.3names,
buffersize=200)

Here il1.3names iSs a vector of names we created earlier. buffersize

says how many lines to read in one gulp — small values can
reduce memory use



Other statistical packages

library(foreign)

stata <- read.dta("salary.dta")

spss <- read.spss("salary.sav", to.data.frame=TRUE)
sasxport <- read.xport("salary.xpt")

epiinfo <- read.epiinfo("salary.rec")

Notes:

e Many functions in R live in optional packages. The library()
function lists packages, shows help, or loads packages from
the package library.

e [ he foreign package is in the standard distribution. It handles
import and export of data. Thousands of extra packages are
available at http://cran.us.r-project.org.


http://cran.us.r-project.org

T he web

Files for read.table can live on the web

£12000<-read.table("http://faculty.washington.edu/tlumley/
data/FLvote.dat", header=TRUE)

It's also possible to read from more complex web databases (such
as the genome databases)



Operating on data

As R can have more than one data frame available you need to
specify where to find a variable. The syntax antibiotics$duration
means the variable duration in the data frame antibiotics.

## This 1s a comment

## Convert temperature to real degrees
antibiotics$tempC <- (antibiotics$temp-32)*5/9
## display mean, quartiles of all variables

summary (antibiotics)



Subsets

Everything in R is a vector (but some have only one element).
Use [] to extract subsets

## First element

antibiotics$temp[1]

## All but first element
antibiotics$temp[-1]

## Elements 5 through 10
antibiotics$temp[5:10]

## Elements 5 and 7
antibiotics$temp[c(5,7)]

## People who received antibiotics (note ==
antibiotics$temp[ antibiotics$antib==1 ]
## or

with(antibiotics, templantib==1])



Notes

e Positive indices select elements, negative indices drop ele-
ments

e 5:10 is the sequence from 5 to 10

e YOou need == to test equality, not just =

e with() temporarily sets up a data frame as the default place
to look up variables. You can do this longer-term with
attach(), but I don't know any long-term R users who do
this. It isn’t as useful as it initial seems.



More subsets

For data frames you need two indices

## First row

antibiotics[1,]

## Second column

antibiotics/[,2]

## Some rows and columns
antibiotics[3:7, 2:4]

## Columns by name

antibiotics[, c("id","temp","wbc")]
## People who received antibiotics
antibiotics[antibiotics$antib==1, ]
## Put this subset into a new data frame

yes <- antibiotics[antibiotics$antib==1,]



Computations

mean(antibiotics$temp)
median(antibiotics$temp)

var (antibiotics$temp)

sd(antibiotics$temp)

mean (yes$temp)
mean(antibiotics$temp[antibiotics$antib==1]
with(antibiotics, mean(templ[sex==2]))
toohot <- with(antibiotics, temp>99)

mean (toohot)



Factors

Factors represent categorical variables. You can’t do mathemat-
ical operations on them (except for ==

> table(salary$rank,salary$field)

Arts Other Prof
Assist 668 2626 754
Assoc 1229 4229 1071
Full 942 6285 1984
> antibiotics$antib<-factor(antibiotics$antib,
labels=c("Yes","No"))
> antibiotics$agegp<-cut(antibiotics$age, c(0,18,65,100))
> table(antibiotics$agegp)
(0,18] (18,65] (65,100]
2 19 4



Help

e help(fn) for help on fn

e help.search("topic") for help pages related to "topic

e apropos("tab") for functions whose names contain " tab”

e Search function on the http://www.r-project.org web site.


http://www.r-project.org

Graphics

R (and S-PLUS) can produce graphics in many formats, includ-
ing:

e ON screen

e PDF files for IATEX or emailing to people

e PNG or JPEG bitmap formats for web pages (or on non-
Windows platforms to produce graphics for MS Office). PNG
IS also useful for graphs of large data sets.

e On Windows, metafiles for Word, Powerpoint, and similar
programs



Setup

Graphs should usually be designed on the screen and then may
be replotted on eg a PDF file (for Word/Powerpoint you can
just copy and paste)

For printed graphs, you will get better results if you design the
graph at the size it will end up, eg:

## on Windows

windows (height=4,width=6)
## on Unix
x11(height=4,width=6)

Word or IATEX can rescale the graph, but when the graph gets
smaller, so do the axis labels...



Finishing

After you have the right commands to draw the graph you can
produce it in another format: eg

## start a PDF file
pdf ("picture.pdf" ,height=4,width=6)

## your drawing commands here

### close the PDF file
dev.off ()



Drawing

Usually use plot() to create a graph and then lines(), points(),
legend(), text(), and other commands to annotate it.

plot() is a generic function: it does appropriate things for
different types of input

## scatterplot

plot(salary$year, salary$salary)
## boxplot

plot(salary$rank, salary$salary)
## stacked barplot
plot(salary$field, salary$rank)

and others for other types of input. This is done by magic
(actually, by advanced technology).



Formula interface

The plot() command can be written
plot(salary~rank, data=salary)

introducing the formula system that is also used for regression
models. The variables in the formula are automatically looked
up in the data= argument.



Designing graphs

Two important aspects of designing a graph

e It should have something to say

e It should be legible

Having something to say is your problem; software can help with
legibility.



Designing graphs

Important points

e Axes need labels (with units, large enough to read)

e Color can be very helpful (but not if the graph is going to
be printed in black and white).

e Different line or point styles usually should be labelled.

e Points plotted on top of each other won't be seen

After these are satisfied, it can’t hurt to have the graph look
nice.



Options

Set up a data set: daily ozone concentrations in New York,
summer 1973

data(airquality)
names (airquality)
airquality$date<-with(airquality, ISOdate(1973,Month,Day))

All these graphs were designed at 4inx6in and stored as PDF
files



plot (Ozone~date, data=airquality)
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plot (0Ozone~“date, data=airquality,type="1")
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plot (0Ozone~date, data=airquality,type="h")
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plot (Ozone~“date, data=airquality,type="n")
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bad<-ifelse(airquality$0zone>=90, "orange","forestgreen")
plot (Ozone~date, data=airquality,type="h",col=bad)
abline (h=90,1ty=2,col="red")



Ozone

100 150

50

May

Jun

|
Jul

date

Aug

Sep

Oct




Notes

e type= controls how data are plotted. type="n" is not as useless
as it looks: it can set up a plot for latter additions.

e Colors can be specified by name (the colors() function gives
all the names), by red/green/blue values (#rrggbb with six
base-sixteen digits) or by position in the standard palette of
8 colors. For pdf () and quartz(), partially transparent colors
can be specified by #rrggbbaa.

e abline draws a single straight line on a plot

e ifelse() selects between two vectors based on a logical
variable.

e 1ty specifies the line type: 1 is solid, 2 is dashed, 3 is dotted,
then it gets more complicated.



Adding to a plot

data(cars)

plot (speed”dist,data=cars)

with(cars, lines(lowess(dist,speed), col="tomato", lwd=2))

plot (speed”dist,data=cars, log="xy")

with(cars, lines(lowess(dist,speed), col="tomato", lwd=2))
with(cars, lines(supsmu(dist,speed), col="purple", lwd=2))
legend (2,25, legend=c("lowess","supersmoother") ,bty="n", lwd=2,

col=c("tomato","purple"))



Adding to a plot
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Adding to a plot
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Adding to a plot
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Notes

e lines adds lines to an existing plot (points() adds points).

e lowess() and supsmu() are scatterplot smoothers. They draw
smooth curves that fit the relationship between y and «x
locally.

e log="xy" asks for both axes to be logarithm (log="x" would
just be the x-axis)

e legend() adds a legend



Boxplots

data(api, package="survey")

boxplot (mobility~stype,data=apipop, horizontal=TRUE)



Boxplots
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Notes

e boxplot computes and draws boxplots.

e horizontal=TRUE turns a boxplot sideways



Barplots

Use barplot to draw barplots and hist to draw histograms:

barplot (VADeaths,beside=TRUE, legend=TRUE)
hist (apipop$api99,col="peachpuff",xlab="1999 API",
main="",prob=TRUE)

e main= specifies a title for the top of the plot

e prob=TRUE asks for a real histogram with probability density
rather than counts.

e xlab (and ylab) are general arguments for axis titles.



20 30 40 50 60 70

10

Rural Male

Rural Female

Urban Male

50-54
55-59
60-64
65-69
7074

OO0OBE m

Urban Female



_
0200°0

_ _
0T00°0

Alsuag

_
0000°0

400 500 600 /700 800 900 1000

300

1999 API



Large data sets

Scatterplots quickly get crowded. For example, the California
Academic Performance Index is reported on 6194 schools

> plot(api00~api99,data=apipop)
> colors<-c("tomato","forestgreen","purple") [apipop$stype]
> plot(api00~api99,data=apipop,col=colors)



Large data sets
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Density plots

For a single large scatterplot some form of density estimation is
useful

library (MASS)

with(apipop, image(kde2d(api99,api00),
col=grey(seq(1,0.2,length=20))))

library (hexbin)

with(apipop, plot(hexbin(api99,apiO0), style="centroids"))

e kde2d in the MASS package is a 2-dimensional kernel density
estimate. It returns the density of points everywhere on a
rectangular grid. Variants are contour, which draws contours
and filled.contour, which does coloring and contours.

e image draws images from a rectangular grid of data



Density plots

e hexbin is in the hexbin package from the Bioconductor
project. It computes the number of points in each hexagonal
bin.

e The style=centroids plot puts a filled hexagon with size
depending on the number of points at the centroid of the
points in the bin.



Density plots
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Density plots
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Smoothers

For showing multiple groups a scatterplot smoother or perhaps
boxplots would be better.

> boxplot (apiO00~cut(api99, (3:10)*100), data=apipop)
> par(las=1)
> par(mar=c(5.1,10.1,2.1,2.1))
> boxplot(apiOO~interaction(stype,
cut (api99, (3:10)*100)),
data=apipop, horizontal=TRUE,col=1:3)
plot (api00~api99,data=apipop,type="n")
with(subset (apipop, stype=="E"),
lines(lowess(api99, apiO0), col="tomato"))
with(subset (apipop, stype=="H"),
lines(lowess(api99, api00), col="forestgreen"))
with(subset (apipop, stype=="M"),
lines(lowess(api99, api00), col="purple"))



Smoothers
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Smoothers
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Notes

e cut turns a variable into a factor by cutting it at the specified
points.

e Note the use of type="n"

e par (mar=) sets the margins around the plot. We need a large
left margin for the labels.

e subset takes a subset of a data frame.



Example: Confidence intervals

A popular plot in the lab sciences |looks like:

Death Rates in Virginia
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and can be created with gplots::barplot2



Example: Confidence intervals

Line plots are ordinarily preferable to bar plots,
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Example: Confidence intervals

but the confidence intervals get in the way
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Example: Confidence intervals

Offsetting the intervals slightly and coloring them helps a bit
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Example: Confidence intervals

We draw the confidence intervals with the segments() function.

A common strategy is to plot the error bars leading up from
upper curves and down from lower curves, but this is where they
are least useful.

Transparency is useful to allow overlap, but requires bands rather
than intervals

Only a few formats support transparent colors (eg PNG and
PDF) and software may not support it (R does only for PDF).
Colors are specified as RGBA, where the A or o« channel is 1 for
completely opaque and O for completely transparent.



Example: Confidence intervals
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Confidence intervals and even simultaneous confidence bands
do not necessarily reflect uncertainty in the shape of a curve
correctly.

For example, in a plot of heart disease risk vs blood pressure we
might see an increased risk for the lowest blood pressures and
want to know if this increase is real.

This requires simulating or bootstrapping realisations of the
curve to compare to the actual curve. Simulation is most useful
in a testing context, where we can generate curves under the
null hypothesis.
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Code

pdf ("uncertainty.pdf" ,height=6,width=7,version="1.4")

x<-runif (50)

y<-rnorm(50) +2*x

ii<-order (x)

x<-x[ii]

y<-y[iil]

11<-lowess(x,y)

plot(x,y,ylim=c(-3,6))

lines(11l,col="red",lwd=2)

s<-sqrt(var(11$y-y))

polygon(c(x,rev(x)), c(11$y+2*s,rev(11l$y-2*s)),
col="#FF000070", border=NA)

plot(x,y,ylim=c(-3,6))

lines(11l,col="red",lwd=2)

replicate(10, {index<-sample(50,replace=TRUE);

lines(lowess(x[index],y[index]) ,col="grey")})



Code

plot(x,y,ylim=c(-3,6))

lines(11l,col="red",lwd=2)

replicate(10, {xindex<-sample(50,replace=TRUE) ;
yindex<-sample(50,replace=TRUE) ;
lines(lowess(x[xindex] ,y[yindex]),col="grey")})

dev.off ()



Conditioning plots

Ozone is a secondary pollutant, it is produced from organic
compounds and atmostpheric oxygen in reactions catalyzed by
nitrogen oxides and powered by su nlight.

However, looking at ozone concentrations in NY in summer we
see a non-monotone relationship with sunlight



Conditioning plots
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Conditioning plots

Here we draw a scatterplot of 0Ozone vS Solar.R for various
subranges of Temp and Wind. A simple version of what is possible

with the Trellis system.

data(airquality)
coplot (Ozone ~ Solar.R | Temp * Wind, number = c(4, 4),
data = airquality,
pch = 21, col = "goldenrod", bg = "goldenrod")



Conditioning plots
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Trellis

The Dbest-known system for producing conditioning plots is
Cleveland’s Trellis, in S-PLUS. There is a similar system based
on Cleveland’s research in R, called lattice.

Trellis is not restricted to conditioning scatterplots: it allows
histograms, bo xplots, barcharts, and even 3-d plots.

One dramatic example of the usefulness of these plots is the
following graph of some repeatedly analyzed data on field trials
of barley varieties.

library(lattice)

data(barley)

dotplot(variety ~ yield | site, data = barley, groups = year,
key = simpleKey(levels(barley$year), space = "right"))



Dotplots: barley varieties
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Syntax notes

Trellis graphics are specified by a formula:
response”predictor|conditioning*variables

The conditioning variables must be discrete or be shingles
produced with a function such as equal.count.

Some Trellis functions (eg histogram) do not have a response
variable, and some (eg cloud, levelplot) have more than one
predictor variable.

The panel function that draws each subplot can be customised
either by specifying options or by writing a new panel function.

Read Cleveland’'s Visualizing Data for examples (and because
everyone producing statistical graphics should read it).



Coplot: NY ozone

We can produce a conditioning plot of NY summer ozone with
the lattice package

xyplot (Ozone~Solar.R|equal.count (Temp,4)*equal.count (Wind,4),

data=airquality,
strip=strip.custom(var.name=c("Temperature","Wind speed")))

The labelling is slightly different from the coplot version



Coplot: NY ozone
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Stereo pairs

As an example of more advanced things that can be done:

pointless example of 3-D graphics

par.set <-list(axis.line = list(col = "transparent"),
clip = list(panel = FALSE))
print(cloud(Sepal.Length ~ Petal.Length * Petal.Width,

data = iris, cex = .8,
groups = Species,
main = "Stereo",

screen = list(z = 20, x = -70, y = 3),
par.settings = par.set),
split = c(1,1,2,1), more = TRUE)
print (cloud(Sepal.Length ~ Petal.Length * Petal.Width,

data = iris, cex = .8,
groups = Species,
main = "Stereo",

screen = list(z = 20, x = -70, y = 0),

par.settings = par.set),
split = c(2,1,2,1))

d



Stereo pairs

Stereo Stereo
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Mathematical annotation

An expression can be specified in R for any text in a graph
(help(plotmath) for details). Here we annotate a graph drawn
with polygon.

x<-seq(-10,10,1length=400)
y1<-dnorm(x)
y2<-dnorm(x,m=3)
par (mar=c(5,4,2,1))
plot(x,y2,x1lim=c(-3,8) ,type="n",
xlab=quote (Z==frac(mu[l1]-mu[2],sigma/sqrt(n))),
ylab="Density")
polygon(c(1.96,1.96,x[240:400],10),
c(0,dnorm(1.96,m=3) ,y2[240:400],0),
col="grey80",1ty=0)
lines(x,y2)
lines(x,y1)
polygon(c(-1.96,-1.96,x[161:1],-10),
c(0,dnorm(-1.96,m=0) ,y1[161:1],0),
col="grey30",1ty=0)
polygon(c(1.96,1.96,x[240:400],10),
c(0,dnorm(1.96,m=0) ,y1[240:400],0),
col="grey30")



Mathematical annotation

legend(4.2, .4,fill=c("grey80","grey30"),
legend=expression(P(abs(Z)>1.96,H[1])==0.85,
P(abs(Z)>1.96,H[0])==0.05) ,bty="n"
text (0, .2,quote(H[0]:""mul1]==mul[2]))
text(3,.2,quote(H[1] :""mul[1]==mu[2]+delta))



Mathematical annotation
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Manadging code and data

Options for storage

e \Workspace. When R starts it will read in the file .RData, and
when it exits you are given the chance to save the workspace
to that file (you can save it at any time with save.image()).
This saves everything except |loaded packages and is the
equivalent of the .Data directory in S-PLUS.

e Binary files. The save() command puts specified functions
and data in a binary file. This file can be attach()ed (like a
directory in S-PLUS) or load()ed.

e Source code. Instead of saving results and data they can be
recreated as needed from source code.



Multiple projects

There are two extreme ways to handle multiple projects in R

e Store each project in a separate directory and use the .RData
file to hold everything. If you want to share functions or
objects with another project then explicitly export and import
them. The .RData file is primary; any transcripts or source
files are documentation.

e Store everything as source code. For every piece of analysis
have a file that reads in data, processes it, and possibly saves
a modified version to a new file. The source is primary, any
saved files are just a labour-saving device.

The same choices apply to programming as well as data analysis,
and to other dialects of S.



Workspace IS primary

The first method is common among new users of S-PLUS, partly
because S-PLUS automatically saves your workspace. Many of
us subsequently find that we aren’t sufficiently organised to be
sure that we keep records of how every analysis was done.

This approach is (even) riskier in R than in S-PLUS.

e In R the workspace is only saved when you explicitly ask for
it: in S-PLUS it is saved frequently

e In R a corrupted .RData is likely to be completely unreadable,
in S-PLUS many objects will still be recoverable.

It makes sense for short-term projects, especially if data loss is
not critical, or for very careful people.



sSource is primary

Managing projects is easy when everything can be reconstructed
from source files. These files and intermediate data files can be
stored in a project directory where they are easy to find and are
automatically time-stamped by the operating system.

Emacs Speaks Statistics (ESS) is particularly useful for this style
of R use. With R running in an Emacs window you can run
sections of code with a few keystrokes. The S-PLUS script
window also offers many of the features of ESS.



Logging

One problem with interactive data analysis is keeping a good
log of your analysis. This problem can be avoided by using
interactive analysis only to construct a script that is then run to
provide the final results.

Other options:

e ESS will capture a complete transcript, as will the Windows
or Mac GUIs and the JGR GUI

e in R, sink(filename, split=TRUE) will send all output to both
filename and the screen. Use sink() before quitting to close
the file.

Note that none of these will log graphics output.



Merging and matching

The data for an analysis often do not come in a single file.
Combining multiple files is necessary.

If two data sets have the same individuals in the same order,
they can simply be pasted together side by side.

## CHS baseline data

baseline <- read.spss("I:/DISTRIB/BASEBOTH.SAV", to.data.frame=TRUE)
## Events data (eg death, heart attack, ...)

events <- read.spss("I:/SAVEFILES/EVSUMO4.SAV", to.data.frame=TRUE)

if ('all(baseline$IDNO==events$IDNO)) {
stop("PANIC: They don’t match!")
} else {
alldata <- cbind(baseline, events[,c("TTODTH","DEATH",
"TTOMI","INCMI")])



Merging: order

The data might need to be sorted first

index1 <- order(baseline$IDNO)
baseline <- baseline[index1,]
index2 <- order(events$IDNO)
events <- events[index2,]
if ('all(baseline$IDNO==events$IDNO)) {
stop("PANIC: They still don’t match!")
} else {
alldata <- cbind(baseline, events[,c("TTODTH","DEATH",
"TTOMI","INCMI")])

Note that order(baseline$IDNO) gives a subset of row numbers
containing all the rows but in a different (increasing) order.



Merging: merge

Or there might be different rows in the two data sets

e Some people are missing from one or other data set (eg
baseline and year 5 visits)

e Some people have multiple records in one data set (eg
baseline data and all hospitalisations

The merge function can do an database outer join, giving a data
set that has all the possible matches between a row in one and
a row in the other



Merging: merge

combined <- merge(baseline, hospvisits, by="IDN0", all=TRUE)

e by=IDNO says that the IDNO variable indicates individuals who
should be matched.

e all=TRUE says that even people with no records in the
hospvisits data set should be kept in the merged version.



How does it work: match

You could imagine a dumb algorithm for merging

for(row in firstdataset){
for(otherrow in seconddataset){
if (row$IDNO==otherrow$IDNO)
##add the row to the result

More efficiently, the match function gives indices to match one
variable to another

> match(c("B“,"I","O",“S","T","A","T"),LETTERS)
[1] 2 9 15 19 20 1 20
> letters[match(c("B","I","O","S","T","A","T"),LETTERS)]

[1] llbll llill IIOII IISII lltll llall lltll



Reshaping

Sometimes data sets are the wrong shape. Data with multiple
observations of similar quantities can be in long form (multiple
records per person) or wide form (multiple variables per person).

Example: The SeattleSNPs genetic variation discovery resource
supplies data in a format

SNP sample all al2
000095 D001 C T
000095 D002 T T
000095 DOO3 T T

so that data for a single person is broken across many lines. To
convert this to one line per person



> data<-read.table("http://pga.gs.washington.edu/data/il6
/ilkn6.prettybase.txt",
col.names=c("SNP","sample","allelel","allele2"))
> dim(data)
[1] 2303 4
> wideData<-reshape(data, direction="wide", idvar="sample",
timevar="SNP")
> dim(wideData)
[1] 47 99
> names (wideData)
[1] "sample" "allelel.95"  "allele2.95"  "allelel.205"
[6] "allele2.205" "allelel.276" "allele2.276" "allelel.321"
[9] "allele2.321" "allelel.657" "allele2.657" "allelel.1086"



e direction="wide" says we are going from long to wide format

e idvar="sample" says that sample identifies the rows in wide
format

e timevar="SNP" says that SNP identifies which rows go into
the same column in wide form (for repeated measurements
over time it would be the time variable)



Broken down by age and sex

A common request for Table 1 or Table 2 in a medical paper
IS to compute means and standard deviations, percentages, or
frequency tables of many variables broken down by groups (eg
case/control status, age and sex, exposure,...).

That is, we need to apply a simple computation to subsets of
the data, and apply it to many variables. One useful function
is by(), another is tapply(), which is very similar (but harder to
remember).



> by(airquality$0zone, list(month=airquality$Month),
mean, na.rm=TRUE)

month: 5

[1] 23.61538

month: 6

[1] 29.44444

month: 7

[1] 59.11538

month: 8

[1] 59.96154

month: 9

[1] 31.44828



Notes

e [ he first argument is the variable to be analyzed.

e The second argument is a list of variable defining sub-
sets. In this case, a single variable, but we could do
list (month=airquality$Month, toohot=airquality$Temp>85) to
get a breakdown by month and temperature

e [ he third argument is the analysis function to use on each
subset

e Any other arguments (na.rm=TRUE) are also given to the
analysis function

e The result is really a vector (with a single grouping variable)
or array (with multiple grouping variables). It prints differ-
ently.



Confusing digression: str()

How do I know it is an array? Because str() summarises the
internal structure of a variable.

> a<- by(airquality$0zone, list(month=airquality$Month,
toohot=airquality$Temp>85),
mean, na.rm=TRUE)
> str(a)
by [1:5, 1:2] 23.6 22.1 49.3 40.9 22.0 ...
- attr(*, "dimnames")=List of 2
..$ month : chr [1:5] "B" "e" "7" "8"
..$ toohot: chr [1:2] "FALSE" "TRUE"
- attr(*, "call")= language by.data.frame(data =
as.data.frame(data), INDICES = INDICES,
FUN = FUN, na.rm = TRUE)

- attr(*, "class")= chr "by"



One function, many variables

There is a general function, apply() for doing something to rows
or columns of a matrix (or slices of a higher-dimensional array).

> apply(psal,1:8],2,mean,na.rm=TRUE)

id nadir pretx ps bss grade
25.500000 16.360000 670.751163 80.833333 2.520833 2.146341
grade age obstime

2.146341 67.440000 28.460000

In this case there is a special, faster, function colMeans, but the
apply can be used with other functions such as sd, IQR, min,...



apply

e the first argument is an array or matrix or dataframe

e the third argument is the analysis function

e the second argument says which margins to keep (1=rows,
2=columns, ...), so 2 means that the result should keep the
columns: apply the function to each column.

e any other arguments are given to the analysis function

There is a widespread belief that apply() is faster than a for()
loop over the columns. This is a useful belief, since it encourages
people to use apply(), but it is not true.



New functions

Suppose you want the mean and standard deviation for each
variable. One solution is to apply a new function. Watch

carefully,...

> apply(psal,1:8], 2, function(x) c(mean=mean(x,na.rm=TRUE),
stddev=sd(x,na.rm=TRUE)))
id nadir pretx ps bss grade
mean 25.50000 16.3600 670.7512 80.83333 2.5208333 2.1463415
stddev 14.57738 39.2462 1287.6384 11.07678 0.6838434 0.7924953
age obstime
mean 67.440000 28.46000
stddev 5.771711 18.39056



New function

function(x) c(mean=mean(x,na.rm=TRUE),
stddev=sd(x,na.rm=TRUE))

translates as: “If you give me a vector, which I will call x, T will
mean it and sd it and give you the results”

We could give this function a name and then refer to it by name

mean.and.sd <- function(x) c(mean=mean(x,na.rm=TRUE),
stddev=sd(x,na.rm=TRUE))
apply(psal,1:8], 2, mean.and.sd)

which would save typing if we used the function many times.
Note that giving the function a name is not necessary, any more
than giving 2 a name.



by() revisited

Now we know how to write simple functions we can use by()
more generally

> by(psal,1:8], list(remission=psa$inrem),
function(subset) round(apply(subset, 2, mean.and.sd), 2))

remission: no

id nadir  pretx ps bss grade age obstime
mean 31.03 22.52 725.99 79.71 2.71 2.11 67.17 21.75
stddev 11.34 44.91 1362.34 10.29 0.52 0.83 5.62 15.45
remission: yes

id nadir  pretx ps bss grade age obstime
mean 11.29 0.53 488.45 83.57 2.07 2.23 68.14 45.71
stddev 12.36 0.74 1044.14 12.77 0.83 0.73 6.30 13.67



Notes

function(subset) round(apply(subset, 2, mean.and.sd), 2)

translates as “If you give me a data frame, which I will call subset,
I will apply the mean.and.sd function to each variable, round to
2 decimal places, and give you the results”



Relational databases

Data storage and data management for large files is more
appropriately done in a relational database.

R has packages for interfaces to any database via ODBC and
JDBC, and to specific packages directly: Oracle, PostgreSQL,
MySQL, SQLite.

These interfaces allow SQL queries to be sent to a database, and
for data tables to be sent to and from R (subject to database
permissions).

The survey package can use data in a database table or view,
loading it only as necessary. The biglm package can fit linear
models to very large data sets stored in a relational database.



Example

NHANES III imputation data stored in a SQLite database

> library(RSQLite}
> sqlite<-dbDriver("SQLite")
> nhanesdb<-dbConnect(sqlite,"imp.db")
> dbListTables (nhanesdb)
[1] n core n n imp1 n n imp2 n n imp3 n n imp4 n n imp5 n
> dbGetQuery(nhanesdb, "select count(*) from core")
count (*)
1 33994
> dbGetQuery(nhanesdb,"select * from core limit 1")
row_names SEQN DMPFSEQ DMPSTAT DMARETHN DMARACER DMAETHNR HSSEX

1 1 3 3872 2 3 1 1 1
HSDOIMO HSAGEIR HSAGEU HSAITMOR HSFSIZER HSHSIZER DMPCNTYR DMPFIPSR
1 1 21 2 261 4 4 37 6

DMPMETRO DMPCREGN SDPPHASE SDPPSU6 SDPSTRA6 WTPFQX6 WTPQRP1 WTPQRP2
1 1 4 1 1 44 1623 657.12 405.01



Example

Creating complete data sets requires joining the core and
imputation data sets

dbSendQuery (nhanesdb, "create view setl as select * from
core inner join impl using(SEQN)")

so that setl contains the core variables and the first set of
imputations.

We can read in the whole table with
setl <- dbReadTable(nhanesdb, "setl")
or just read in a few variables

setl <- dbGetQuery(nhanesdb, "select SDPPSU6, SDPSTRA6, WTPFQX6,
HSSEX, HSAGEIR, TCPMI from setl")



Example

The interface also supports more advanced SQL features such
as transaction management, incremental reading of large data
sets, stored procedures, connecting to separate database servers.

The RSQLite package is the easiest to manage for simple
databases, since it includes the entire database system and since
a database is just a file.

Configuring interfaces to existing database servers will probably
need help from your database administrator.



Capturing output

To send text output to a file
sink("filename")
and to cancel it

sink ()

e Error messages are not diverted.

e Use sink("filename",split=TRUE) to send output to the file
and to the screen



To capture output in a variable, use capture.output ()

> output <- capture.output(example(by))
> length(output)

[1] 107

> output [1]

(1] "

> output [2]

[1] "by> require(stats)"

> output [3]

[1] "[1] TRUE"



Capturing pretty output

Having chunks of output in typewriter font in the middle of the
document iS convenient but you may want something prettier.

The xtable() function in the xtable package will produce IATEX
or HT ML tables from matrices or from statistical model output.
The HTML can be saved to a file and read into eg Word or

Powerpoint.



Sweave

Sweave is a system for reproducible data analysis

1. Write a report in a mixture of IATEX and R

2. Process the report with Sweave, to run the code and put the
output in the document.

Ensures that the output (including graphics) in the document
matches the input. The odfWeave package does the same thing
with OpenOffice instead of IATEX, and Duncan Temple Lang is
working on a system for modern versions of MS Word.



Example: package vignettes

Input file (survey/inst/doc/survey.Rnw/)

We have a cluster sample in which 15 school districts were sampled and
then all schools in each district. This is in the data frame
\texttt{apiclusl}, loaded with \texttt{data(api)}. The two-stage sample is
defined by the sampling unit (\texttt{dnum}) and the population
size(\texttt{fpc}). Sampling weights are computed from the population
sizes, but could be provided separately.

<<>>=

data(api)

dclusl <- svydesign(id = “dnum, weights = “pw, data = apiclusl, fpc = “fpc)
©

The \texttt{svydesign} function returns an object containing the survey data and
metadata.
<<K>>=

summary (dclusl)
©

Sweave extracts R code chunks between <<>>= and @ and runs
them, creating a IATEX document, which is then processed into
PDF



Example: package vignettes

We have a cluster sample in which 15 school districts were sampled and then
all schools in each district. This is in the data frame apiclusi, loaded with
data(api). The two-stage sample is defined by the sampling unit (dnum) and
the population size(fpc). Sampling weights are computed from the population
sizes, but could be provided separately.

> data(api)
> dclusl <- svydesign(id = “dnum, weights = “pw, data = apiclusl,
+ fpc = “fpc)

The svydesign function returns an object containing the survey data and
metadata.

> summary(dclus1)

1 - level Cluster Sampling design
With (15) clusters.
svydesign(id = “dnum, weights = “pw, data = apiclusl, fpc = “fpc)
Probabilities:
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.02954 0.02954 0.02954 0.02954 0.02954 0.02954
Population size (PSUs): 757
Data variables:

[1] "cds" "stype" "name" "sname" "snum" "dname"

[7] "dnum" "cname" "cnum" "flag" "pcttest" "apiOO"
[13] "api99" "target" "growth" "sch.wide" "comp.imp" "both"
[19] "awards" "meals" "ell" "yr.rnd" "mobility" "acs.k3"
[25] "acs.46" "acs.core" "pct.resp" "not.hsg" "hsg" "some.col"
[31] "col.grad" "grad.sch" "avg.ed" "full" "emer" "enroll"

[37] n apl . StU." "pr" "pW"



Functions

We saw simple functions earlier.

function(x) c(mean = mean(x), stddev = sd(x))

Functions are more important in R than in other statistical
packages and more important than in many programming
languages.

S, and now R, are deliberately designed to blur the distinction
between users and programmers. R is a good language for rapid
development of tools: whether the tool is a customized barplot
Oor a package of survey functions.

This comes at the expense of speed and memory efficiency, but
it doesn’'t take many hours of programming time to pay for a
gigabyte of memory.



Example: ROC curve

Plotting the sensitivity and specificity of a continuous variable
as a predictor of a binary variable in an ROC curve.

ROC <- function(test, disease){

cutpoints <- c(-Inf, sort(unique(test)), Inf)
sensitivity<-sapply(cutpoints,

function(result) mean(test>result & disease)/mean(disease))
specificity<-sapply(cutpoints,

function(result) mean(test<=result & 'disease)/mean(!disease))
plot(sensitivity, 1-specificity, type="1")
abline(0,1,1ty=2)
return(list (sens=sensitivity, spec=specificity))



Example: ROC curve

> x<-rnorm(100,mean=0)

> y<-rnorm(100, mean=1)

> isx<-rep(c(TRUE,FALSE),each=100)

> ROC(c(x,y), isx)

$sens
[1] 1.00 0.99 0.98 0.97 0.96 0.95 0.94 0.93 0.93 0.93 0.92 0.91 0.!
[21] 0.85 0.84 0.83 0.82 0.81 0.80 0.79 0.78 0.77 0.76 0.75 0.74 0.



Example: ROC curve

1 — specificity

00 02 04 06 08 1.0

sensitivity



Notes

e sort sorts a vector, so sort(unique(test)) are the ordered
observed values. -Inf and Inf are added to ensure that the
curve gets to (0,0) and (1,1).

e disease iS a logical variable (or treated as one). !disease
means " not disease”

e Variables created inside the function are local

e In R, variables that are visible where a function is defined
(eg test and disease) will be visible inside the function. This
isn’t true in S-PLUS, where this ROC function won't work.
Read 3.3.1 and 7.12 in the R FAQ if you are curious.

In S-PLUS we would have to write



Notes

sensitivity<-sapply(cutpoints,
function(result,test, disease)
mean (test>result & disease)/mean(disease),

test=test,

disease=disease)

making this a less attractive approach.

e return() is optional. Recall that every expression in R has
some value: the value of the last expression will be returned.

e rep() repeats things. Two most common versions are
rep(something, times) and rep(somethings, each=times), but
there are more complex versions.



T heoretical note

In principle, the use of user-written functions and second-order
functions such as apply() and by() makes it possible never to
change the value of a variable.

Variables can then be thought of as names for values, as in math;
rather than storage for values, as in C or Fortran.

The extremist form of this position is called " functional pro-
gramming”. It is a useful idea in moderation: code is easier to
understand when a variable doesn’'t change values.



Historical and cultural note

There have always been multiple versions of the assignment
operator available in R and S, not always the same ones.

e In the OIld Days, R and S-PLUS allowed <- and _. The
underscore actually printed as a left arrow on some Bell Labs
terminals.

e In S-PLUS since 5.0 and R since 1.4.0 = has been allowed as
an alternative to <-.

e In R since 1.8.0 the _ has been removed as an assignment

operator and is now an ordinary character that can be used
in variable names.



In R, = can't be used in some places (where you probably
wouldn't have meant to do an assignment), so that

a=4
if(a =5) b =4
print(a)

gives 5 on S-PLUS and a syntax error in R.

I use <-, but there's nothing wrong with using = if you prefer.
Do get used to leaving spaces around it.

Don’'t use _, even in S-PLUS where it is legal. You can't imagine
how much some people hate it.



Example: computing the median

Suppose we wanted to write a function to compute the median.
A simple algorithm is to sort the data and take the middle

element.

ourmedian <- function(x){
n<-length(x)
return(sort(x) [(n+1)/2])



Notes

e sort() sorts a vector

e return() is optional. Remember that everything is an
expression and produces a value. If there is no return()
statement the value of the function is the value of the last
expression evaluated.



For even sample sizes we might prefer the average of the two
Mmiddle values

ourmedian <- function(x){
n<-length(x)
if (n %% 2==1) ## odd
sort(x) [(n+1) /2]

else { ## even
middletwo <- sort(x)[(n/2)+0:1]
mean (middletwo)

}



We need to handle missing values

ourmedian <- function(x, na.rm=FALSE){
if (any(is.na(x))) {
if (na.rm)
x<-x['is.na(x)]
else
return(NA)
+
n<-length(x)
if (n %% 2==1) ## odd
sort (x) [(n+1) /2]

else { ## even
middletwo <- sort(x)[(n/2)+0:1]
mean (middletwo)

}



We might also want to

e Check that x is numeric, so that a median makes sense

e Check that n is not O

T he built-in function also takes advantage of an option to sort()
that stops sorting when specific indices (eg (n+1)/2) are correct.
This is faster for large vectors (by 1sec=50% for n = 10°).



Simulating Data

S has a wide range of functions to handle mathematical
probability distributions

e pnorm gives the Normal cumulative distribution function
e gnorm IS the inverse: the Normal quantile function

e dnorm iS the Normal density
e rnorm Simulates data from Normal distributions

Similar sets of p,q,d,r functions for Poisson, binomial, t, F,
hypergeometric, x2, Beta,...

Also sample for sampling from a vector, replicate for repeating
a computation.



Bootstrap

The basic problem of probability is: Given a distribution F' what
IS the distribution of a statistic T

Statisticians have a harder problem: Given data that come from
an unknown distribution F', what is the distribution of a statistic
T7?

We do have an estimate of the true data distribution. It should
look like the sample data distribution. (we write F,, for the
sample data distribution and FF for the true data distribution). We
can work out the sampling distribution of T,,(FF,) by simulation,
and hope that this is close to that of T, (F).

Simulating from [F,, just involves taking a sample, with replace-
ment, from the observed data. This is called the bootstrap. We
write F* for the data distribution of a resample.



Too good to be true?

There are obviously some limits to this

e It requires large enough samples for [¥,, to be close to F.

e It works better for some statistics (eg mean, variance) than
others (eg median, quantiles)

e It doesn't work at all for some statistics (eg min, max,
number of unique values)

The reason for the difference between statistics is that [F,, needs
to be "close to” F in an appropriate sense of "close” for the
statistic. Precise discussions of this involve infinite-dimensional
vector spaces.



Uses of bootstrap

There are two main uses

e When you know the distribution of 7}, is normal with mean
6, you just don’'t know how to compute the variance

e With a well-behaved statistic where the sample size is a little
small for the Normal approximation.

It can also be used when you don’t know what the asymptotic
distribution is, but then you do need quite a bit of analysis to be
sure that the bootstrap works for this statistic.

There are many ways of actually doing the bootstrap compu-
tations. In most cases they all work, but in difficult cases it
matters which one you use. Read a good book (eg Davison &
Hinkley Bootstrap methods and their application)



Example

Median bilirubin in PBC data

data(pbc, package="survival")
resample.a.median<-function(x){

xstar<- sample(x, size=length(x), replace=TRUE)

median(xstar)

¥

lots.of .medians<-replicate(1000, resample.a.median(pbc$bili))

hist(lots.of .medians, col="peachpuff",prob=TRUE)



Example

Histogram of lots.of.medians
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Notes

e sample() takes a sample from a given vector. This can
be with or without replacement and with equal or unequal
probabilities.

e replicate executes an expression many times and returns the
results. It is tidier than a loop or apply.

e data() has a package argument for when you want the
dataset but not the whole package.

e [ he histogram is fairly discrete, because the data are rounded
to 2 decimal places: the true sampling distribution of the
median is discrete. The true distribution of serum Dbilirubin
isn’t, but we have no data from that distribution.



How well does it work?

These graphs show the 5% and 95% points of the estimated
sampling distribution. 90% of these should cover the true value.
We need to use known distributions for this.

library(MASS) ## Modern Applied Statistic in S (V&R)

resample.a.corr<-function(xy){
index <- sample(nrow(xy),size=nrow(xy) ,replace=TRUE)

cor (xy[index,1],xy[index,2])

lots.of.corr<-replicate(30, {
dat<-mvrnorm(50,c(0,0), Sigma=matrix(c(1,.5,.5,1),2))
replicate (400, resample.a.corr(dat))

1)



How well does it work?

qq<-apply(lots.of.corr,2,quantile, probs=c(0.05,0.95))

plot(1,1,x1im=c(1,30),ylim=range(c(0.5,qq)) ,ylab="Correlation",xlab=

abline(h=0.5,1ty=2)

in.interval<-qql[1,]<0.5 & qq[2,]>0.5

segments(1:30,qql1,],1:30,
qql2,],col=ifelse(in.interval, "grey50", "purple") ,lwd=2)



How well does it work?
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Notes

e We need to simulate the entire bootstrap process — draw a
real sample, take 400 resamples from it — thirty times

e \We resample rows, by sampling from numbers 1...nrow(xy)
and then apply this as a subset index.

e 400 is a minimal reasonable number for boostraps and most
simulations. The uncertainty in the 90% range is about
1.5%, in 2@ 95% range would be about 3.5%. Usually between
1000 and 10,000 is a good number.

e [ he percentile bootstrap will always give estimates between
-1 and 1 for correlation (unlike the t-bootstrap)

e [ he percentile bootstrap isn't improved by transforming the
statistic, the ¢t may be, eg, for correlation, bootstrapping
2 =tanh—1r



Lower quartile

resample.a.qg25<-function(x){

x <- sample(x,length(x),replace=TRUE)
quantile(x, prob=0.25)
+

lots.of.q2b<-replicate(30, {
dat<-rnorm(20)
replicate (400, resample.a.q25(dat))

1)

qq<-apply(lots.of.q25,2,quantile, probs=c(0.05,0.95))

plot(1,1,x1im=c(1,30),ylim=range(qq) ,ylab="Lower quartile",xlab="")

abline (h=gnorm(0.25),1ty=2)

in.interval<-qql1,]<gnorm(0.25) & qql2,]>gnorm(0.25)

segments(1:30,qq[1,],1:30,
qql2,],col=ifelse(in.interval,"grey50", "purple") ,lwd=2)
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Minimum

resample.a.min<-function(x){
x <- sample(x,length(x),replace=TRUE)

min (x)

lots.of .min<-replicate(30, {
dat<-rgamma(20,2,2)
replicate (400, resample.a.min(dat))
1

qq<-apply(lots.of .min,2,quantile, probs=c(0.05,0.95))

plot(1,1,x1im=c(1,30) ,ylim=range(c(-0.5,q9q)) ,ylab="Minimum",xlab="")

abline (h=0,1ty=2)

in.interval <- qql[l1,] < 0 & qql[2,]> 0

segments(1:30,qq[1,],1:30,
qql2,],col=ifelse(in.interval,"grey50", "purple") ,lwd=2)
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Bootstrap packages

You don't have to write your own bootstrap functions: there are
two packages

e boot, associated with a book by Davison and Hinkley, and
written by Angelo Canty

e bootstrap, associated with book by Efron and Tibshirani

The boot package comes with R and is more comprehensive.
S-PLUS also has nice bootstrap functions written by Tim
Hesterberg (then at Insightful, now at Google).



Debugging and optimization

Premature optimization is the root of all evil
Donald Knuth

T he first task when programming is to get the program correct,
which is easier if it is written more simply and clearly.

Some clarity optimizations make the code faster, eg operating on
whole vectors rather than elements. Some have no real impact,
eg using *apply functions. Some make the code slower, like
adding names to vectors.

When the code works correctly, the next step is to find out which
parts, if any, are too slow, and then speed them up. This requires
measurement, rather than guessing.



Timing

e R and S-PLUS both have proc.time(), which returns the
current time. Save it before a task and subtract from the
value after a task.

e S-PLUS has sys.time(expression), R has system.time() to
time the evaluation of expression

e In R, Rprof(filename) turns on the profiler, and Rprof (NULL)
turns it oOff. The profiler writes a list of the current
functions being run to filename many times per second.
summaryRprof (filename) summarizes this to report how much
time is spent in each function.

Remember that a 1000-fold speedup in a function that uses 10%
of the time is less helpful than a 30% speedup in a function that
uses 50% of the time.



Memory

e R for windows has memory.size, which can report either cur-
rent allocation or maximum ever allocated; on all platforms
gc() will report maximum allocation since the last call to

gc(reset=TRUE).

e R can be compiled with a memory profiler, which tracks
where in the code memory is allocated.



Debugging

e traceback() shows where S was at the last error: what
function it was in, where this was called from, and so on
back to your top-level command.

e options(error=recover) starts the debugger as soon as an
error OCcurs.

e browser () starts the debugger at this point in your code.

e options(warn=2) turns warnings into errors.

e debug(fname) starts the debugger when function fname() is
called.

The debugger gives you an interactive command prompt inside
your function, so you can step through the code, look at
variables, evaluate any code, etc.



Debugging: trace

trace() is a more powerful and flexible interface to the debugger.
For example, we can set the debugger to start on statement 4
of ourmedian if the number of observations is zero.

> trace(ourmedian, tracer=quote(if(n==0) browser()), at=4)
> x<-rnorm(10)

> ourmedian(x)

Tracing ourmedian(x) step 4

[1] -0.7614219

> ourmedian(x[x>0])

Tracing ourmedian(x[x > 0]) step 4
[1] 0.5219192

> ourmedian(x[x>2])

Tracing ourmedian(x[x > 2]) step 4
Called from: ourmedian(x[x > 2])
Browse[1]>



Faster code

e Operations on whole vectors are fast.

e Matrix operations may be faster even than naive C code

e Functions that have few options and little error checking are
faster: eg sum(x)/length(x) is faster than mean(x)

e Allocating memory all at once is faster than incremental al-
location: x<-numeric(10000); x[i]<-f(i) rather than x<-c(x,
f(i))

e Data frames are much slower than matrices (especially large
ones).

e Running out of memory makes code much slower, especially
under Windows.

If none of this works, coding a small part of the program in C
may make it hundreds of times faster.



A very little on objects

Many functions in R return objects, which are collections of
information that can be operated on by other functions.

In more extreme object-oriented languages objects have no user-
serviceable parts. In R you can always get direct access to the
internals of an object. You shouldn’t use this access if there is
another way to get the information: the developer may change
the internal structure and break your code.

Use str and names to guess the internal structure.



Generics and methods

Many functions in R are generic. This means that the function
itself (eg plot, summary, mean) doesn’'t do anything. The work is
done by methods that know how to plot, summarize or average
particular types of information. Earlier I said this was done by
magic. Here is the magic.

If you call summary on a data.frame, R works out that the correct
function to do the work is summary.data.frame and calls that
instead. If there is no specialized method to summarize the
information, R will call summary.default

You can find out all the types of data that R knows how to
summarize with two functions



> methods ("summary")

[1] summary.Date summary .P0SIXct summary .POSIX1t
[4] summary.aov summary.aovlist summary.connection
[7] summary.data.frame summary.default summary .ecdf*

[10] summary.factor summary.glm summary.infl

[13] summary.lm summary.loess* summary .manova
[16] summary.matrix summary .mlm summary.nlsx

[19] summary.packageStatus* summary.ppr* summary . prcomp*
[22] summary.princomp* summary .stepfun summary.stlx*

[25] summary.table summary . tukeysmooth*

Non-visible functions are asterisked
> getMethods ("summary")
NULL

There are two functions because S has two object systems, for
historical reasons.



Methods

The class and method system makes it easy to add new types
of information (eg survey designs) and have them work just like
the built-in ones.

Some standard methods are

e print, summary: everything should have these

e plot Or image: if you can work out an obvious way to plot
the thing, one of these functions should do it.

e coef, vcov: Anything that has parameters and variance
matrices for them should have these.

e anova, logLik, AIC: a model fitted by maximum likelihood
should have these.

e residuals: anything that has residuals should have this.



New classes

Creating a new class is easy
class(x) <- "duck"

R will now automatically look for the print.duck method, the
summary.duck method, and so on.

There is no checking of structure: you need to make sure that
X Can print.duck, walk.duck, quack.duck.

The (newer, slightly more complicated) S4 class system has
formal class structures and does check contents.



ROC curves (again)

A slightly more efficient version of the ROC function, and one
that handles ties in the test variable:

drawROC<-function(T,D){
DD <- table(-T,D)
sens <- cumsum(DD[,2])/sum(DD[,2])
mspec <- cumsum(DD[,1])/sum(DD[,1])
plot (mspec, sens, type="1")

Note that we use the vectorized cumsum rather than the implied

loop of sapply.

We want to make this return an ROC object that can be plotted
and operated on in other ways



ROC curve object

ROC<-function(T,D){

DD <- table(-T,D)

sens <- cumsum(DD[,2])/sum(DD[,2])

mspec <- cumsum(DD[,1])/sum(DD[,1])

rval <- list(tpr=sens, fpr=mspec,
cutpoints=rev(sort(unique(T))),
call=sys.call())

class(rval)<-"ROC"

rval

Instead of plotting the curve we return the data needed for the
plot, plus some things that might be useful later. sys.call() is
a copy of the call.



Methods

We need a print method to stop the whole contents of the object
being printed

print.ROC<-function(x,...){
cat ("ROC curve: ")
print (x$call)



Methods

A plot method

plot.ROC <- function(x, xlab="1-Specificity",
ylab="Sensitivity", type="1",...){
plot (x$fpr, x$tpr, xlab=xlab, ylab=ylab, type=type,

We specify some graphical parameters in order to set defaults
for them. Others are automatically included in ....



Methods

We want to be able to add lines to an existing plot

lines.ROC <- function(x, ...){
lines (x$fpr, x$tpr, ...)
+

and also be able to identify cutpoints

identify.ROC<-function(x, labels=NULL, ...,digits=1)
{
if (is.null(labels))
labels<-round(x$cutpoints,digits)
identify(x$fpr, x$tpr, labels=labels,...)
}



Statistical Modelling in S

T he systematic part of a model is specified as a model formula
with basic structure

outcome” exposure*modifier+confounder

e The left-hand side is the outcome (response, independent)
variable, the right-hand side describes the predictors.

e [ he x specifies an interaction and the corresponding main
effects.

e Factors (eg race, subtype of disease) are coded by default
with indicator variables for all except the first category.

e terms can be variables, simple expressions, or composite
objects



Examples

e depress”rural*agegp+partner+parity+income Does the risk of
postnatal depression vary between urban and rural areas,
separately for each age group, adjusted for having a domestic
partner, previous numbr of pregnancies, income?

e asthma pm25+temp+I(temp~2)+month How does the number of
hospital admissions for asthma vary with fine particulate air
pollution, adjusted for temperature and month of the year?

e log(pm25) “temp+stag+month+lag(temp,1) Predict (log-transformed)
fine particulate air pollution from temperature, air stagna-
tion, month, and vyesterday’'s temperature

e Surv(ttoMI,MI) “LDL+age+sex+hibp+diabetes HOw does LDL choles-
terol predict (time to) myocardial infarction after adjusting
for age, sex, hypertension, and diabetes?



Generalised linear models

Generalised linear models (linear regression, logistic regression,
poisson regression) are handled by the gim() function. This
requires

e A model formula
e A dataframe containing the variables [optional]
e A model family:

binomial() logistic regression

gaussian() linear regression

poisson() Poisson regression

and others less commonly used

glm(asthma~pm25+temp+I (temp~2)+month,
data=pmdat,family=poisson())



Model objects

Typical statistics packages fit a model and output the results. In
S a model object is created that stores all the information about
the fitted model. Coefficients, diagnhostics, and other model
summaries are produced by methods for this object.

We saw some of these methods earlier.



Classes of model

R has a wide range of regression models

1m() Linear regression

glm() generalised linear models

coxph() Cox model (in survival package)

clogit () Conditional logistic regression (in survival package)
gee() Generalised Estimating Equations (in gee and geepack
packages)

1me () ,1mer () Mixed models (in nlme and Ime4 packages)

e polr() Proportional odds model (in MASS package)

e Two implementations of gam, in the mgcv and gam packages.



Example: logistic regression

Ille-et-Vilaine (o0)esophageal cancer case—control study:

e All (200) cases of esophageal cancer in men in the Ille-et-
Vilaine region of Brittany over ten years

e Approximately 5 controls per case, sampled from the popu-
lation (roughly 1/500 sampling fraction)

e Interest was in age profile and in associations with alcohol
and tobacco consumption



Example: logistic regression

> library(foreign)
> esoph<-read.dta("~/TEACHING/518/esoph.dta")

> summary (esoph)

agegp alcgp tobgp case
25-34:117 0-39g/day:444 0-9g/day:603  Min. :0.000
35-44:208  40-79 :430 10-19 :294 1st Qu.:0.000
45-54:259  80-119 :189  20-29 :165 Median :0.000
556-64:318 120+ :112 30+ :113  Mean :0.170
65-74:216 3rd Qu.:0.000
75+ : b7 Max. :1.000



Example: logistic regression

LLogistic regression model: indicators for age in 10-year groups,
tobacco in 10g/day, and alcohol in 30g/day groups.

> modelil<-glm(case~agegp+alcgpt+tobgp,data=esoph, family=binomial)
> summary (modell)

Call:
glm(formula = case ~ agegp + alcgp + tobgp, family = binomial,
data = esoph)

Deviance Residuals:
Min 1Q Median 3Q Max
-1.530 -0.655 -0.387 -0.153 2.821

Coefficients:

Estimate Std. Error z value Pr(>|zl)
(Intercept) -5.911 1.030 -5.74 9.6e-09 *xx
agegp35-44 1.610 1.068 1.51 0.13163
agegp45-54 2.975 1.024 2.90 0.00367 *x
agegp55-64 3.358 1.020 3.29 0.00099 *xx*xx
agegp65-74 3.727 1.025 3.64 0.00028 *xx*x
agegp75+ 3.682 1.064 3.46 0.00054 *x*x



Example: logistic regression

alcgp40-79 1.122 0.238 4.70 2.6e-06 *x*x
alcgp80-119 1.447 0.263 5.561 3.7e-08 *xx*
alcgpl120+ 2.115 0.288 7.36 1.9e-13 *xx*
tobgp10-19 0.341 0.205 1.66 0.09716 .
tobgp20-29 0.396 0.246 1.61 0.10671
tobgp30+ 0.868 0.277 3.14 0.00170 *x*

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 1072.13 on 1174 degrees of freedom
Residual deviance: 898.86 on 1163 degrees of freedom
AIC: 922.9

The alcohol and tobacco associations are approximately linear:

termplot (modell, se=TRUE)



Example: logistic regression

Partial for agegp

I I I I I I
25-34 35-44 45-54 55-64 65-74 75+

agegp



Example: logistic regression

Partial for alcgp

I I I I
0-39g/day 40-79 80-119 120+

alcgp



Example: logistic regression
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Example: logistic regression

Fit a model with linear terms for alcohol and tobacco

> model2<-glm(case~agegp+as.numeric(alcgp)+as.numeric(tobgp) ,data=esoph,
family=binomial)

> summary (model?2)

Call:

glm(formula = case ~ agegp + as.numeric(alcgp) + as.numeric(tobgp),
family = binomial, data = esoph)

Coefficients:

Estimate Std. Error z value Pr(>|zl)
(Intercept) -6.5418 1.0423 -6.28 3.5e-10 *x*x*
agegp35-44 1.5930 1.0666 1.49 0.13529
agegp45-54 2.9591 1.0233 2.89 0.00383 *x*
agegpb5-64 3.3202 1.0186 3.26 0.00112 x*x*
agegp65-74 3.6848 1.0233 3.60 0.00032 x*x*x*
agegp75+ 3.6276 1.0627  3.41 0.00084 kx
as.numeric(alcgp) 0.6531 0.0845 7.73 1.1e-14 **x
as.numeric(tobgp) 0.2616 0.0820 3.19 0.00142 *x



Example: impact of weights

Survey statisticians would usually use sampling weights, others
would not. In this case it doesn’'t make any difference. Use the
sandwich package to get correct standard errors for sampling
weights (or, tomorrow, use the survey package)

library(sandwich)
model3<- glm(formula = case ~ agegp + as.numeric(alcgp) + as.numeric(tobgp),
family = binomial, data = esoph, weights = ifelse(case ==1, 1, 500))
> coef (model3)
(Intercept) agegp35-44 agegp45-54
-12.57326 1.59534 2.97665
agegp55-64 agegp65-74 agegp’5+
3.28795 3.60320 3.60496
as.numeric(alcgp) as.numeric(tobgp)
0.60672 0.23421
> coef (model?2)
(Intercept) agegp35-44 agegp45-54
-6.54177 1.59303 2.959156
agegp55-64 agegp65-74 agegp’5+
3.32021 3.68481 3.62764

as.numeric(alcgp) as.numeric(tobgp)
0.65308 0.26162



Example: impact of weights

> sqrt(diag(vcovHC(model3)))

(Intercept) agegp35-44 agegp45-54
1.024722 1.067502 1.026647
agegpb5-64 agegp65-74 agegp75+
1.024081 1.027158 1.067215
as.numeric(alcgp) as.numeric(tobgp)
0.084669 0.086815
> SE(model2)
(Intercept) agegp35-44 agegp45-54
1.042271 1.066593 1.023264
agegpb5-64 agegp65-74 agegp75+
1.018647 1.023349 1.062673
as.numeric(alcgp) as.numeric(tobgp)
0.084520 0.081977

The lack of difference is pretty typical for categorical predictors.
More difference is seen with continuous predictors, especially
heavy-tailed. The usual rule of thumb based on coefficient of
variation of weights is just not relevant here.



R Packages

The most important single innovation in R is the package
system, which provides a cross-platform system for distributing
and testing code and data.

The Comprehensive R Archive Network (http://cran.r-project.
org) distributes public packages, but packages are also useful for
internal distribution.

A package consists of a directory with a DESCRIPTION file and
subdirectories with code, data, documentation, etc. The Writing
R EXxtensions manual documents the package system, and
package.skeleton() simplifies package creation.


http://cran.r-project.org
http://cran.r-project.org

Packaging commands

e R CMD INSTALL packagename installs a package.
e R CMD check packagename runs the QA tools on the package.
e R CMD build packagename creates a package file.



The DESCRIPTION file

From the survey package

Package: survey

Title: analysis of complex survey samples

Description: Summary statistics, generalised linear models, and general maximum
pseudolikelihood estimation for stratified, cluster-sampled, unequally weighted
survey samples. Variances by Taylor series linearisation or replicate weights. P
ost-stratification and raking. Graphics.

Version: 2.9

Author: Thomas Lumley

Maintainer: Thomas Lumley <tlumley@u.washington.edu>

License: LGPL

Depends:

Requires: R (>=2.0.1)

Suggests: survival

Packaged: Tue Mar 8 16:30:43 2005; thomas

Depends: lists R packages needed to build this one. Requires: is
used mostly for requiring a version of R. Suggests: lists packages
needed eg to run examples. Packaged: is added automatically by
the system.



The INDEX file

This also goes in the package directory and contains information
about every sufficiently interesting function in the package.

If an INDEX file is not present it will be created from the titles of
all the help pages. The INDEX file is displayed by

library (help=packagename)



Interpreted code

R code goes in the R subdirectory, in files with extension .s, .S,
.r, .ROr .q.

The filenames are sorted in ASCII order and then concatenated

(one of the few places that R doesn’'t observe locale sorting
conventions).

R CMD check detects a number of common errors such as using T
instead of TRUE.



Documentation

Documentation in .Rd format (which looks rather like IATEX) is
the the man subdirectory.

R CMD Sd2Rd will convert S-PLUS documentation (either the old
troff format or the new SGML) and R CMD Rdconv will do the
reverse.

The QA tools check that every object is documented and that
the arguments a function is documented to have are the same
as the ones it actually has, and that all the examples run.



Data

Data go in the data subdirectory and are read with the data()
function.

e ASCII tables with .tab, .txt or .TXT, read using read.table(
,header=TRUE)
e R source code with .R or .r extensions, read using source

e R binary format with .Rdata or .rda extensions, read using
load.

The directory has an index file (00INDEX) to provide descriptions
of the data files.



Compiled code

C or Fortran code (or other code together with a Makefile) goes
in the src subdirectory.

It is compiled and linked to a DLL, which can be loaded with
the library.dynam function.

Obviously this requires suitable compilers. The nice people at
CRAN compile Windows and Macintosh versions of packages for
you, but only if it can be done without actual human intervention.



inst/ and Vignettes

The contents of the inst subdirectory are copied on installation.
A CITATION file can be supplied in inst to give information on how
to cite the package. These are read by the citation() function.
Please cite R and packages that you use.

Vignettes, Sweave documents that describe how to carry out par-
ticular tasks, go in the inst/doc/ subdirectory. The Bioconductor

project in bioinformatics is requiring vignettes for its packages.

You can put anything else in inst/ as well.



Tests

Additional validation tests go in the tests subdirectory. Any .R
file will be run, with output going to a corresponding .Rout file.
Errors will cause R CMD check to fail.

If there is a .Rout.save file it will be compared to the .Rout file,
with differences listed to the screen.



Distributing packages

If you have a package that does something useful and is well-
tested and documented, you might want other people to use

it too. Contributed packages have been very important to the
success of R (and before that of S-PLUS).

Packages can be submitted to CRAN by ftp.

e [he CRAN maintainers will make sure that the package
passes CMD check (and will keep improving CMD check to find
more things for you to fix in future versions).

e Other users will complain if it doesn’'t work on more esoteric
systems

e But it will be appreciated. Really.
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