
R and the survey package:

Day 1: Analysis and programming in R

Thomas Lumley

Biostatistics

University of Washington

WSS short course — 2010–3–23

What are R and S-PLUS?

• S is a system for interactive data analysis. It has always

been designed with interactive use in mind and was con-

sciously designed to blur the distinction between users and

programmers

• S is a high-level programming language, with similarities

to Scheme and Python. It is a good system for rapid

development of statistical applications.

• R is a free implementation of a dialect of the S language. S-

PLUS is a commercial system (now owned by TIBCO) based

on Bell Labs’ S, which was developed by John Chambers and

colleagues

Why not S?

R (and S) are accused of being slow, memory-hungry, and able

to handle only small data sets.

This is completely true.

Fortunately, computers are fast and have lots of memory. Data

sets with a few tens of thousands of observations can be handled

on cheap laptops with 1Gb memory. Multicore servers with 32Gb

or more to handle millions of observations now start at about

$6000

Tools for interfacing R with databases allow very large data sets,

but this isn’t transparent to the user.

Why not R?

21 CFR 11, Basel 2, and similar regulatory guidelines require

tedious effort to document and verify things. Doing this for

another system is unappealing (although not intrinsically harder

than for commercial software).

Although R is free, commercial support is still expensive and the

companies doing it for R are relatively new.

R updates too often: R users should update their version at least

annually, although there is no difficulty in keeping old versions

around as well.

How similar are R and S-PLUS?

• For basic command-line data analysis they are very similar

• Most programs written in one dialect can be translated

straightforwardly to the other (translating to R is easier than

translating to S-PLUS)

• Most large programs will need some translation

• R has a very successful package system for distributing code

and data.

R GUIs

Not GUIs for statistics, but for files/scripts/windows etc

• built-in: Windows, Mac

• cross-platform: JGR (http://www.rosudo.org/JGR), Emacs/ESS

(http://ess.r-project.org).

http://www.rosudo.org/JGR
http://ess.r-project.org

Outline

• Reading data

• Simple data summaries

• Graphics

• Scripts, Transcripts, ESS, Sweave

• Stratified data summaries

• SQL database interfaces.

• More on functions: bootstrap, simulations.

• Debugging and optimization

• A little on objects

• Regression models: lm, glm, coxph

• Packages

Reading data

• Text files

• Stata datasets

• Web pages

• (Databases)

Much more information is in the Data Import/Export manual.

Reading text data

The easiest format has variable names in the first row

case id gender deg yrdeg field startyr year rank admin

1 1 F Other 92 Other 95 95 Assist 0

2 2 M Other 91 Other 94 94 Assist 0

3 2 M Other 91 Other 94 95 Assist 0

4 4 M PhD 96 Other 95 95 Assist 0

and fields separated by spaces. In R, use

salary <- read.table("salary.txt", header=TRUE)

to read the data from the file salary.txt into the data frame

salary.

Syntax notes

• Spaces in commands don’t matter (except for readability),
but Capitalisation Does Matter.

• TRUE (and FALSE) are logical constants

• Unlike many systems, R does not distinguish between com-
mands that do something and commands that compute a
value. Everything is a function: ie returns a value.

• Arguments to functions can be named (header=TRUE) or
unnamed ("salary.txt")

• A whole data set (called a data frame is stored in a variable
(salary), so more than one dataset can be available at the
same time.

Reading text data

Sometimes columns are separated by commas (or tabs)

Ozone,Solar.R,Wind,Temp,Month,Day

41,190,7.4,67,5,1

36,118,8,72,5,2

12,149,12.6,74,5,3

18,313,11.5,62,5,4

NA,NA,14.3,56,5,5

Use

ozone <- read.table("ozone.csv", header=TRUE, sep=",")

or

ozone <- read.csv("ozone.csv")

Syntax notes

• Functions can have optional arguments (sep wasn’t used the

first time). Use help(read.table) for a complete description

of the function and all the arguments.

• There’s more than one way to do it.

• NA is the code for missing data. Think of it as “Don’t

Know”. R handles it sensibly in computations: eg 1+NA,

NA & FALSE, NA & TRUE. You cannot test temp==NA (Is

temperature equal to some number I don’t know?), so there

is a function is.na().

Reading text data

Sometime the variable names aren’t included

1 0.2 115 90 1 3 68 42 yes

2 0.7 193 90 3 1 61 48 yes

3 0.2 58 90 1 3 63 40 yes

4 0.2 5 80 2 3 65 75 yes

5 0.2 8.5 90 1 2 64 30 yes

and you have to supply them

psa <- read.table("psa.txt", col.names=c("ptid","nadirpsa",

"pretxpsa", "ps","bss","grade","age",

"obstime","inrem"))

or

psa <- read.table("psa.txt")

names(psa) <- c("ptid","nadirpsa","pretxpsa", "ps",

"bss","grade","age","obstime","inrem"))

Syntax notes

• Assigning a single vector (or anything else) to a variable uses

the same syntax as assigning a whole data frame.

• c() is a function that makes a single vector from its

arguments.

• names is a function that accesses the variable names of a data

frame

• Some functions (such as names) can be used on the LHS of

an assignment.

Fixed-format data

Two functions read.fwf and read.fortran read fixed-format data.

i1.3<-read.fortran("sipp87x.dat",c("f1.0","f9.0",

"f2.0","f3.0", "4f1.0", "15f1.0",

"2f12.7", "f1.0","f2.0" "2f1.0",

"f2.0", "15f1.0", "15f2.0",

"15f1.0","4f2.0", "4f1.0","4f1.0",

"15f1.0","4f8.0","4f7.0","4f8.0",

"4f5.0","15f1.0"), col.names=i1.3names,

buffersize=200)

Here i1.3names is a vector of names we created earlier. buffersize

says how many lines to read in one gulp — small values can

reduce memory use

Other statistical packages

library(foreign)

stata <- read.dta("salary.dta")

spss <- read.spss("salary.sav", to.data.frame=TRUE)

sasxport <- read.xport("salary.xpt")

epiinfo <- read.epiinfo("salary.rec")

Notes:

• Many functions in R live in optional packages. The library()

function lists packages, shows help, or loads packages from

the package library.

• The foreign package is in the standard distribution. It handles

import and export of data. Thousands of extra packages are

available at http://cran.us.r-project.org.

http://cran.us.r-project.org

The web

Files for read.table can live on the web

fl2000<-read.table("http://faculty.washington.edu/tlumley/

data/FLvote.dat", header=TRUE)

It’s also possible to read from more complex web databases (such

as the genome databases)

Operating on data

As R can have more than one data frame available you need to

specify where to find a variable. The syntax antibiotics$duration

means the variable duration in the data frame antibiotics.

This is a comment

Convert temperature to real degrees

antibiotics$tempC <- (antibiotics$temp-32)*5/9

display mean, quartiles of all variables

summary(antibiotics)

Subsets

Everything in R is a vector (but some have only one element).

Use [] to extract subsets

First element

antibiotics$temp[1]

All but first element

antibiotics$temp[-1]

Elements 5 through 10

antibiotics$temp[5:10]

Elements 5 and 7

antibiotics$temp[c(5,7)]

People who received antibiotics (note ==)

antibiotics$temp[antibiotics$antib==1]

or

with(antibiotics, temp[antib==1])

Notes

• Positive indices select elements, negative indices drop ele-

ments

• 5:10 is the sequence from 5 to 10

• You need == to test equality, not just =

• with() temporarily sets up a data frame as the default place

to look up variables. You can do this longer-term with

attach(), but I don’t know any long-term R users who do

this. It isn’t as useful as it initial seems.

More subsets

For data frames you need two indices

First row

antibiotics[1,]

Second column

antibiotics[,2]

Some rows and columns

antibiotics[3:7, 2:4]

Columns by name

antibiotics[, c("id","temp","wbc")]

People who received antibiotics

antibiotics[antibiotics$antib==1,]

Put this subset into a new data frame

yes <- antibiotics[antibiotics$antib==1,]

Computations

mean(antibiotics$temp)

median(antibiotics$temp)

var(antibiotics$temp)

sd(antibiotics$temp)

mean(yes$temp)

mean(antibiotics$temp[antibiotics$antib==1]

with(antibiotics, mean(temp[sex==2]))

toohot <- with(antibiotics, temp>99)

mean(toohot)

Factors

Factors represent categorical variables. You can’t do mathemat-

ical operations on them (except for ==)

> table(salary$rank,salary$field)

Arts Other Prof

Assist 668 2626 754

Assoc 1229 4229 1071

Full 942 6285 1984

> antibiotics$antib<-factor(antibiotics$antib,

labels=c("Yes","No"))

> antibiotics$agegp<-cut(antibiotics$age, c(0,18,65,100))

> table(antibiotics$agegp)

(0,18] (18,65] (65,100]

2 19 4

Help

• help(fn) for help on fn

• help.search("topic") for help pages related to ”topic

• apropos("tab") for functions whose names contain ”tab”

• Search function on the http://www.r-project.org web site.

http://www.r-project.org

Graphics

R (and S-PLUS) can produce graphics in many formats, includ-

ing:

• on screen

• PDF files for LATEX or emailing to people

• PNG or JPEG bitmap formats for web pages (or on non-

Windows platforms to produce graphics for MS Office). PNG

is also useful for graphs of large data sets.

• On Windows, metafiles for Word, Powerpoint, and similar

programs

Setup

Graphs should usually be designed on the screen and then may

be replotted on eg a PDF file (for Word/Powerpoint you can

just copy and paste)

For printed graphs, you will get better results if you design the

graph at the size it will end up, eg:

on Windows

windows(height=4,width=6)

on Unix

x11(height=4,width=6)

Word or LATEX can rescale the graph, but when the graph gets

smaller, so do the axis labels...

Finishing

After you have the right commands to draw the graph you can

produce it in another format: eg

start a PDF file

pdf("picture.pdf",height=4,width=6)

your drawing commands here

...

close the PDF file

dev.off()

Drawing

Usually use plot() to create a graph and then lines(), points(),

legend(), text(), and other commands to annotate it.

plot() is a generic function: it does appropriate things for

different types of input

scatterplot

plot(salary$year, salary$salary)

boxplot

plot(salary$rank, salary$salary)

stacked barplot

plot(salary$field, salary$rank)

and others for other types of input. This is done by magic

(actually, by advanced technology).

Formula interface

The plot() command can be written

plot(salary~rank, data=salary)

introducing the formula system that is also used for regression

models. The variables in the formula are automatically looked

up in the data= argument.

Designing graphs

Two important aspects of designing a graph

• It should have something to say

• It should be legible

Having something to say is your problem; software can help with

legibility.

Designing graphs

Important points

• Axes need labels (with units, large enough to read)

• Color can be very helpful (but not if the graph is going to

be printed in black and white).

• Different line or point styles usually should be labelled.

• Points plotted on top of each other won’t be seen

After these are satisfied, it can’t hurt to have the graph look

nice.

Options

Set up a data set: daily ozone concentrations in New York,

summer 1973

data(airquality)

names(airquality)

airquality$date<-with(airquality, ISOdate(1973,Month,Day))

All these graphs were designed at 4in×6in and stored as PDF

files

plot(Ozone~date, data=airquality)

●
●

●
●

●●

●
●

●●● ●

●

●

●

●
●

●
●

●
●

●

●

●
●

●

●

● ●

●

●
● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●●

●

●
●

●

●

●

●● ● ●

●

●
●

● ●

●

●
●

●
● ●

●

●

●
●

●

●● ●

0 50 100 150 200 250 300

0
50

10
0

15
0

New York, Summer 1979

Solar Radiation (langley)

O
zo

ne
 (

pp
b)

plot(Ozone~date, data=airquality,type="l")
0

50
10

0
15

0

date

O
zo

ne

May Jun Jul Aug Sep Oct

plot(Ozone~date, data=airquality,type="h")
0

50
10

0
15

0

date

O
zo

ne

May Jun Jul Aug Sep Oct

plot(Ozone~date, data=airquality,type="n")
0

50
10

0
15

0

date

O
zo

ne

May Jun Jul Aug Sep Oct

bad<-ifelse(airquality$Ozone>=90, "orange","forestgreen")

plot(Ozone~date, data=airquality,type="h",col=bad)

abline(h=90,lty=2,col="red")

0
50

10
0

15
0

date

O
zo

ne

May Jun Jul Aug Sep Oct

Notes

• type= controls how data are plotted. type="n" is not as useless

as it looks: it can set up a plot for latter additions.

• Colors can be specified by name (the colors() function gives

all the names), by red/green/blue values (#rrggbb with six

base-sixteen digits) or by position in the standard palette of

8 colors. For pdf() and quartz(), partially transparent colors

can be specified by #rrggbbaa.

• abline draws a single straight line on a plot

• ifelse() selects between two vectors based on a logical

variable.

• lty specifies the line type: 1 is solid, 2 is dashed, 3 is dotted,

then it gets more complicated.

Adding to a plot

data(cars)

plot(speed~dist,data=cars)

with(cars, lines(lowess(dist,speed), col="tomato", lwd=2))

plot(speed~dist,data=cars, log="xy")

with(cars, lines(lowess(dist,speed), col="tomato", lwd=2))

with(cars, lines(supsmu(dist,speed), col="purple", lwd=2))

legend(2,25, legend=c("lowess","supersmoother"),bty="n", lwd=2,

col=c("tomato","purple"))

Adding to a plot

● ●

● ●
●

●
● ● ●

● ●
● ● ● ●

● ●● ●
● ● ● ●

● ● ●
● ●
● ● ●

● ● ● ●
● ● ●

● ● ● ● ●

●
●

● ●● ●
●

0 20 40 60 80 100 120

5
10

15
20

25

dist

sp
ee

d

Adding to a plot

● ●

● ●

●

●
● ● ●

● ●
● ● ● ●

● ●● ●
● ● ● ●

● ● ●
● ●
● ● ●

● ● ● ●
● ● ●

● ●●● ●
●● ● ●● ●●

2 5 10 20 50 100

5
10

15
25

dist

sp
ee

d

Adding to a plot

● ●

● ●

●

●
● ● ●

● ●
● ● ● ●

● ●● ●
● ● ● ●

● ● ●
● ●
● ● ●

● ● ● ●
● ● ●

● ●●● ●
●● ● ●● ●●

2 5 10 20 50 100

5
10

15
25

dist

sp
ee

d

lowess
supersmoother

Notes

• lines adds lines to an existing plot (points() adds points).

• lowess() and supsmu() are scatterplot smoothers. They draw

smooth curves that fit the relationship between y and x

locally.

• log="xy" asks for both axes to be logarithm (log="x" would

just be the x-axis)

• legend() adds a legend

Boxplots

data(api, package="survey")

boxplot(mobility~stype,data=apipop, horizontal=TRUE)

Boxplots

●● ●● ●● ●● ●●●● ●●●●●● ●●● ●● ●● ●● ●●●● ● ●● ●● ●● ●●●● ●● ●●● ● ● ●●● ●●●●●●●●●●●●●●●● ●●●● ●● ● ●●●●● ●●● ●●● ●●●●● ●●● ● ●●●●● ●●● ● ●●●●●● ●●● ●●● ●●● ●● ● ●● ●●● ●●●● ●●●●●● ●● ● ●● ●●●●● ●● ●●● ●● ●●●● ●● ●●● ●● ●

● ●● ●● ●●● ●● ●●●●●●●● ●● ●● ● ●● ● ● ●●●● ●●● ● ●●● ● ●●●● ●

●●●● ●● ●●●● ● ●●● ●●●● ●●● ●●●● ●● ● ●●●●●●●●● ● ● ●● ● ●●● ● ●●●●● ●●●● ● ●● ● ●● ●●● ●●●● ●● ●●● ●● ● ●● ●●●●● ●● ●●

E
H

M

0 20 40 60 80 100

% new to school

Le
ve

l

Notes

• boxplot computes and draws boxplots.

• horizontal=TRUE turns a boxplot sideways

Barplots

Use barplot to draw barplots and hist to draw histograms:

barplot(VADeaths,beside=TRUE,legend=TRUE)

hist(apipop$api99,col="peachpuff",xlab="1999 API",

main="",prob=TRUE)

• main= specifies a title for the top of the plot

• prob=TRUE asks for a real histogram with probability density

rather than counts.

• xlab (and ylab) are general arguments for axis titles.

Rural Male Rural Female Urban Male Urban Female

50−54
55−59
60−64
65−69
70−74

0
10

20
30

40
50

60
70

1999 API

D
en

si
ty

300 400 500 600 700 800 900 1000

0.
00

00
0.

00
10

0.
00

20

Large data sets

Scatterplots quickly get crowded. For example, the California

Academic Performance Index is reported on 6194 schools

> plot(api00~api99,data=apipop)

> colors<-c("tomato","forestgreen","purple")[apipop$stype]

> plot(api00~api99,data=apipop,col=colors)

Large data sets

●

●●

●

●

●

●

●

●

●
●

●

●

●

● ●

●
●

●●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●
●

●
●
●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●● ●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●●●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

● ●
●

●

●●

●

●●

●

●

●

●

●

●

●
●

●

● ●

●

●
●

●

●●

●
●●
●

●

●

●

●

●

●

●

●

●

●●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
● ●●

●

●
●

●
●

●

●

●

●●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

● ●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●●
●

●
●
●●

●
●●

●●

●

●●
●●
● ●●

●

●●
●●●

●

●● ●

●

●
●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●
●● ●●

●
●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●
●

●
●

●

●

●
●●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

● ●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●

● ●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●
●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●●

●●

●

●

●

●
●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●
● ●
●

●
●

●

●

●

●

●

●

●

●●
● ●●

●
●

●

●
●●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●●

●

●

●

●
●

●

●

● ●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
● ●

●

●

●

●

●●
●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●
●

●●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●●

●

●
●

●

●

●

●

●

●
●

●

●● ●
●
●

●

●
●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●
●

●
●

●
●

●●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●
● ●

●●

●
●

●
●

●

●

●

●

●
●

●
●

●
●

●

●
●

●●

●

●●

●
● ●

●
●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●
● ● ●

●

●

●

●

●
●

● ●●

●

●

● ● ●

● ●

●●

●

●
●●

●
●●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

● ●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●
●

●●●●
●

●
●

●●
●

●

●
●

● ●

●
●

●●

●

●

●

●●
●

●

●●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●
● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

● ●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●

● ●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●
● ●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●●

●

●

●
● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●●

●

●

●

●
●

●

●

●

●

●●

●

●
●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●
● ●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●●

●

● ●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●●

●

●
●

●

●

●

●●

●

●
●

●

● ●

● ●

●

●

●

●

●
●
●

●

●
●
●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

● ●●
●●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
● ●

●●

●
●●

●

●●
●

●

●●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●
●

●
●

●

●

●

●

●●

●

●
●

● ●
●

●●●

●

●

●

●●

●

●

●
●

●
●

●

●
●

● ●

●

●

●

●

●

●

●

●

● ●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●●●

●

●

●
●

●

●

●

●

●

●

● ●

●

●
●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

● ●
●●
●

●

●●
●

●●

●●●

●

●

●

●

●

●

● ●
●

●

●

●
● ●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●
●

●

●

●●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●
●

●
●

●
● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●●

● ●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●●

●

●
●

●

●●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●●
●●●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

● ●

●

●
●

●

●

●

●

●●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

● ●
●

●

●

●
●

●

●

●

●

●

● ●
●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●●

●
●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●●

●
●●

●● ●●
●

●
●

●

●
●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●●

●●

●
●

●
●

●

●●
●
●
●

●
●

●●

●

● ●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

● ●
●

●● ●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●
●

●

●

●

●

●
●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

● ●
●

●

●

●

●
●

●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●
●●

●
●●●

●

●
●

●

●
●

●● ●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●
●●

●

●

●
●●

●●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●●

●●
●

●
●

●

●

●

●

●
●

●
●

●●

● ●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●
●

●

●
●
●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●●

●

●●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●●

●

●
●

● ●

●

●

● ●

●

●

● ●

●

●
●

●

●

● ●

● ●

●

● ●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

● ●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●●

●
●

●●

●

●
●

● ●

●

●

●

●

●

●
● ●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

● ●

●

●●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●
●

●

●

●●

●●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●
●

●

●

●

●

●
●

● ●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●●●
●

●
● ●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●●
●

●

●

●

●
●

●
●

●

●

●
●

●

●●

●● ●

●

●

●●

● ●

●

●

●

●

●
●

●
●

● ●

●

●

●

●

●
●

●

●
●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●
●

●

●●
●
●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●
●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●●

●

●

●

●●
●

●
●

●

●

●

●●

●

●
●

●

●

●
●

●
●

●

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
● ●

●

●

●
●

●

●
●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

● ●

●

●
●
●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●● ● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●
●

●
●

●
●
●

●

●

●
●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●●

●●

●
●

●●

● ●
●

●
●●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●
●

●

●

●

●

●

●

●

●

● ●

● ●

●●●

●
●

● ●

●

●

●

●

●

●
●
●
●●

●
●●
●●

●

●●●

●

●

●●
●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●
●●
●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●

● ●
●●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●
●

●

●

●

●

●

●

●●
●●

●

●

●

●●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

● ●

●

●

●●●

●

●

●

●

●

●

●

●
●
●

●

●

●●

●
●

●

●

●

●

●●●

●

●
●

●

●●

●

●
●

●● ●

●
●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

● ●

●
●●

●

●●

●

●●
●

● ●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●●

●●●

●

●
●

●

●

●

●
●●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●●
●

●

●

●

●● ●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
● ●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●
●
●

●

●

●

●

● ●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●●●
●

●
●

●
●

●

●
●●

●

●

●

●

●
●●

●

●

●

●

●●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●●

●●

●
●●

●

●
●

●●

●
●

●
●●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●●

●●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●
●●

●

●

●

●
●

●

●

●
●

●

●

●

●
● ●

●
●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●●
●

●
●

●

●

●

●●
●

●●

● ●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

● ●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

● ●
●

●

●
●● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●
● ●● ●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●●
●

●●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●
●

●

●
●

●●
●

●

●
●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●
●

● ●

●

●

●

●
●●

●
●

●

●

●
●

● ●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●●●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●
●●

●
●

●●
●

●
●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●● ●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●●

●

●

●
●● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●
●●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●●

● ●

●

● ●

●

●

●●●

●

●

●

●●●

●

●
●

●●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●●
●●

●

●

●

● ●

●

●

●

●

●
●

●

●

●
● ●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●
●

●

●

●

● ●

●

●●

●

●

●●●

●

●

●
●●

●

●

● ●
●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
● ●●

●

●

●

●

300 400 500 600 700 800 900

40
0

50
0

60
0

70
0

80
0

90
0

api99

ap
i0

0

Large data sets

●

●●

●

●

●

●

●

●

●
●

●

●

●

● ●

●
●

●●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●
●

●
●
●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●● ●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●●●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

● ●
●

●

●●

●

●●

●

●

●

●

●

●

●
●

●

● ●

●

●
●

●

●●

●
●●
●

●

●

●

●

●

●

●

●

●

●●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
● ●●

●

●
●

●
●

●

●

●

●●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

● ●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●●
●

●
●
●●

●
●●

●●

●

●●
●●
● ●●

●

●●
●●●

●

●● ●

●

●
●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●
●● ●●

●
●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●
●

●
●

●

●

●
●●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

● ●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●

● ●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●
●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●●

●●

●

●

●

●
●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●
● ●
●

●
●

●

●

●

●

●

●

●

●●
● ●●

●
●

●

●
●●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●●

●

●

●

●
●

●

●

● ●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
● ●

●

●

●

●

●●
●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●
●

●●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●●

●

●
●

●

●

●

●

●

●
●

●

●● ●
●
●

●

●
●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●
●

●
●

●
●

●●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●
● ●

●●

●
●

●
●

●

●

●

●

●
●

●
●

●
●

●

●
●

●●

●

●●

●
● ●

●
●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●
● ● ●

●

●

●

●

●
●

● ●●

●

●

● ● ●

● ●

●●

●

●
●●

●
●●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

● ●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●
●

●●●●
●

●
●

●●
●

●

●
●

● ●

●
●

●●

●

●

●

●●
●

●

●●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●
● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

● ●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●

● ●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●
● ●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●●

●

●

●
● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●●

●

●

●

●
●

●

●

●

●

●●

●

●
●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●
● ●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●●

●

● ●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●●

●

●
●

●

●

●

●●

●

●
●

●

● ●

● ●

●

●

●

●

●
●
●

●

●
●
●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

● ●●
●●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
● ●

●●

●
●●

●

●●
●

●

●●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●
●

●
●

●

●

●

●

●●

●

●
●

● ●
●

●●●

●

●

●

●●

●

●

●
●

●
●

●

●
●

● ●

●

●

●

●

●

●

●

●

● ●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●●●

●

●

●
●

●

●

●

●

●

●

● ●

●

●
●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

● ●
●●
●

●

●●
●

●●

●●●

●

●

●

●

●

●

● ●
●

●

●

●
● ●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●
●

●

●

●●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●
●

●
●

●
● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●●

● ●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●●

●

●
●

●

●●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●●
●●●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

● ●

●

●
●

●

●

●

●

●●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

● ●
●

●

●

●
●

●

●

●

●

●

● ●
●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●●

●
●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●●

●
●●

●● ●●
●

●
●

●

●
●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●●

●●

●
●

●
●

●

●●
●
●
●

●
●

●●

●

● ●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

● ●
●

●● ●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●
●

●

●

●

●

●
●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

● ●
●

●

●

●

●
●

●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●
●●

●
●●●

●

●
●

●

●
●

●● ●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●
●●

●

●

●
●●

●●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●●

●●
●

●
●

●

●

●

●

●
●

●
●

●●

● ●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●
●

●

●
●
●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●●

●

●●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●●

●

●
●

● ●

●

●

● ●

●

●

● ●

●

●
●

●

●

● ●

● ●

●

● ●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

● ●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●●

●
●

●●

●

●
●

● ●

●

●

●

●

●

●
● ●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

● ●

●

●●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●
●

●

●

●●

●●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●
●

●

●

●

●

●
●

● ●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●●●
●

●
● ●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●●
●

●

●

●

●
●

●
●

●

●

●
●

●

●●

●● ●

●

●

●●

● ●

●

●

●

●

●
●

●
●

● ●

●

●

●

●

●
●

●

●
●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●
●

●

●●
●
●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●
●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●●

●

●

●

●●
●

●
●

●

●

●

●●

●

●
●

●

●

●
●

●
●

●

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
● ●

●

●

●
●

●

●
●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

● ●

●

●
●
●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●● ● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●
●

●
●

●
●
●

●

●

●
●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●●

●●

●
●

●●

● ●
●

●
●●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●
●

●

●

●

●

●

●

●

●

● ●

● ●

●●●

●
●

● ●

●

●

●

●

●

●
●
●
●●

●
●●
●●

●

●●●

●

●

●●
●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●
●●
●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●

● ●
●●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●
●

●

●

●

●

●

●

●●
●●

●

●

●

●●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

● ●

●

●

●●●

●

●

●

●

●

●

●

●
●
●

●

●

●●

●
●

●

●

●

●

●●●

●

●
●

●

●●

●

●
●

●● ●

●
●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

● ●

●
●●

●

●●

●

●●
●

● ●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●●

●●●

●

●
●

●

●

●

●
●●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●●
●

●

●

●

●● ●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
● ●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●
●
●

●

●

●

●

● ●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●●●
●

●
●

●
●

●

●
●●

●

●

●

●

●
●●

●

●

●

●

●●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●●

●●

●
●●

●

●
●

●●

●
●

●
●●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●●

●●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●
●●

●

●

●

●
●

●

●

●
●

●

●

●

●
● ●

●
●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●●
●

●
●

●

●

●

●●
●

●●

● ●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

● ●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

● ●
●

●

●
●● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●
● ●● ●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●●
●

●●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●
●

●

●
●

●●
●

●

●
●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●
●

● ●

●

●

●

●
●●

●
●

●

●

●
●

● ●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●●●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●
●●

●
●

●●
●

●
●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●● ●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●●

●

●

●
●● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●
●●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●●

● ●

●

● ●

●

●

●●●

●

●

●

●●●

●

●
●

●●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●●
●●

●

●

●

● ●

●

●

●

●

●
●

●

●

●
● ●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●
●

●

●

●

● ●

●

●●

●

●

●●●

●

●

●
●●

●

●

● ●
●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
● ●●

●

●

●

●

300 400 500 600 700 800 900

40
0

50
0

60
0

70
0

80
0

90
0

api99

ap
i0

0

Density plots

For a single large scatterplot some form of density estimation is

useful

library(MASS)

with(apipop, image(kde2d(api99,api00),

col=grey(seq(1,0.2,length=20))))

library(hexbin)

with(apipop, plot(hexbin(api99,api00), style="centroids"))

• kde2d in the MASS package is a 2-dimensional kernel density

estimate. It returns the density of points everywhere on a

rectangular grid. Variants are contour, which draws contours

and filled.contour, which does coloring and contours.

• image draws images from a rectangular grid of data

Density plots

• hexbin is in the hexbin package from the Bioconductor

project. It computes the number of points in each hexagonal

bin.

• The style=centroids plot puts a filled hexagon with size

depending on the number of points at the centroid of the

points in the bin.

Density plots

300 400 500 600 700 800 900

40
0

50
0

60
0

70
0

80
0

90
0

Density plots

1
7

12
18
23
29
34
40
46
51
57
62
68
73
79
84
90

Counts

300 400 500 600 700 800 900

40
0

50
0

60
0

70
0

80
0

90
0

Smoothers

For showing multiple groups a scatterplot smoother or perhaps

boxplots would be better.

> boxplot(api00~cut(api99,(3:10)*100), data=apipop)

> par(las=1)

> par(mar=c(5.1,10.1,2.1,2.1))

> boxplot(api00~interaction(stype,

cut(api99,(3:10)*100)),

data=apipop, horizontal=TRUE,col=1:3)

plot(api00~api99,data=apipop,type="n")

with(subset(apipop, stype=="E"),

lines(lowess(api99, api00), col="tomato"))

with(subset(apipop, stype=="H"),

lines(lowess(api99, api00), col="forestgreen"))

with(subset(apipop, stype=="M"),

lines(lowess(api99, api00), col="purple"))

Smoothers

●

●

●

●
●

●

●
●

●●
●

●

●

●

●
●

●

●●

●●

(300,400] (400,500] (500,600] (600,700] (700,800] (800,900] (900,1e+03]

40
0

50
0

60
0

70
0

80
0

90
0

Smoothers

● ● ●● ●

●

●● ● ●●

●

●●● ●●● ●

● ●

●

●●

●

E.(300,400]
H.(300,400]
M.(300,400]
E.(400,500]
H.(400,500]
M.(400,500]
E.(500,600]
H.(500,600]
M.(500,600]
E.(600,700]
H.(600,700]
M.(600,700]
E.(700,800]
H.(700,800]
M.(700,800]
E.(800,900]
H.(800,900]
M.(800,900]

E.(900,1e+03]
H.(900,1e+03]
M.(900,1e+03]

400 500 600 700 800 900

Smoothers

300 400 500 600 700 800 900

40
0

50
0

60
0

70
0

80
0

90
0

api99

ap
i0

0

Notes

• cut turns a variable into a factor by cutting it at the specified

points.

• Note the use of type="n"

• par(mar=) sets the margins around the plot. We need a large

left margin for the labels.

• subset takes a subset of a data frame.

Example: Confidence intervals

A popular plot in the lab sciences looks like:

70−74 65−69 60−64 55−59 50−54

Rural Male
Rural Female
Urban Male
Urban Female

Death Rates in Virginia

0
20

40
60

80
10

0

and can be created with gplots::barplot2

Example: Confidence intervals

Line plots are ordinarily preferable to bar plots,

55 60 65 70

0
20

40
60

80
10

0

Age

M
or

ta
lit

y
ra

te
 (

/1
00

0p
y)

Rural Male
Rural Female
Urban Male
Urban Female

Example: Confidence intervals

but the confidence intervals get in the way

55 60 65 70

0
20

40
60

80
10

0

Age

M
or

ta
lit

y
ra

te
 (

/1
00

0p
y)

Rural Male
Rural Female
Urban Male
Urban Female

Example: Confidence intervals

Offsetting the intervals slightly and coloring them helps a bit

55 60 65 70

0
20

40
60

80
10

0

Age

M
or

ta
lit

y
ra

te
 (

/1
00

0p
y)

Rural Male
Rural Female
Urban Male
Urban Female

Example: Confidence intervals

We draw the confidence intervals with the segments() function.

A common strategy is to plot the error bars leading up from

upper curves and down from lower curves, but this is where they

are least useful.

Transparency is useful to allow overlap, but requires bands rather

than intervals

Only a few formats support transparent colors (eg PNG and

PDF) and software may not support it (R does only for PDF).

Colors are specified as RGBA, where the A or α channel is 1 for

completely opaque and 0 for completely transparent.

Example: Confidence intervals

55 60 65 70

0
20

40
60

80

Age

M
or

ta
lit

y
ra

te
 (

/1
00

0p
y)

Rural Male
Rural Female
Urban Male
Urban Female

Confidence intervals and even simultaneous confidence bands

do not necessarily reflect uncertainty in the shape of a curve

correctly.

For example, in a plot of heart disease risk vs blood pressure we

might see an increased risk for the lowest blood pressures and

want to know if this increase is real.

This requires simulating or bootstrapping realisations of the

curve to compare to the actual curve. Simulation is most useful

in a testing context, where we can generate curves under the

null hypothesis.

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

0 10 20 30 40 50

−
20

0
20

40
60

80

x

y

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

0 10 20 30 40 50

−
20

0
20

40
60

80

x

y

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

0 10 20 30 40 50

−
20

0
20

40
60

80

x

y

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

0 10 20 30 40 50

−
20

0
20

40
60

80

x

y

Code

pdf("uncertainty.pdf",height=6,width=7,version="1.4")

x<-runif(50)

y<-rnorm(50)+2*x

ii<-order(x)

x<-x[ii]

y<-y[ii]

ll<-lowess(x,y)

plot(x,y,ylim=c(-3,6))

lines(ll,col="red",lwd=2)

s<-sqrt(var(ll$y-y))

polygon(c(x,rev(x)), c(ll$y+2*s,rev(ll$y-2*s)),

col="#FF000070", border=NA)

plot(x,y,ylim=c(-3,6))

lines(ll,col="red",lwd=2)

replicate(10, {index<-sample(50,replace=TRUE);

lines(lowess(x[index],y[index]),col="grey")})

Code

plot(x,y,ylim=c(-3,6))

lines(ll,col="red",lwd=2)

replicate(10, {xindex<-sample(50,replace=TRUE);

yindex<-sample(50,replace=TRUE);

lines(lowess(x[xindex],y[yindex]),col="grey")})

dev.off()

Conditioning plots

Ozone is a secondary pollutant, it is produced from organic

compounds and atmostpheric oxygen in reactions catalyzed by

nitrogen oxides and powered by su nlight.

However, looking at ozone concentrations in NY in summer we

see a non-monotone relationship with sunlight

Conditioning plots

●
●

●
●

●
●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●
● ●

●

●

●
●

●
●

●

●
●

●

●
●

●

●

●
●

●

●
● ●

0 50 100 150 200 250 300

0
50

10
0

15
0

Solar.R

O
zo

ne

Conditioning plots

Here we draw a scatterplot of Ozone vs Solar.R for various

subranges of Temp and Wind. A simple version of what is possible

with the Trellis system.

data(airquality)

coplot(Ozone ~ Solar.R | Temp * Wind, number = c(4, 4),

data = airquality,

pch = 21, col = "goldenrod", bg = "goldenrod")

Conditioning plots

●●
●

●

● ● ●
●

0
50

15
0

●●
●● ●●

●●

●
● ●● ● ●

●
●●

●

●
●

0 100 250

● ●●● ●● ●
●●

●
●●

●
●● ●● ● ●
● ●●

●
●

●
●

● ● ●●
● ●● ●

●

●

●
●

●
●

●

● ●●
● ●

● ● ●●● ● ●

0 100 250

●

●

●
●

●

●
●

●

●

●
●

●
●

●
●

●

●
●

●

●

●
●

●

● ●

●●

● ●

●

●
●

●

●

●
● ● ●●●

●

●●

●
●

●●

●●● ●
● ●●

●
●

● ● ●

●

●
●

● ●
●

●●

●
●

●
●●

●

●
● ● ● 0

50
15

0

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

0
50

15
0

●●

●
●

●
●

●

●

●

●
●●

●

●

●

●

●●

●

●

●

●
● ●

●
● ●●

●
●

●

● ●
●

●

●

●
●

●●

●●
●

●

●
●

●
●

●
●

●

●
●●

●
●

●

●

●

●

●
●

●●
●

●
●

● ●

●

●

●

●
●

●

●

●
●

●

●

●

●●
●

●●
●

●

●

0 100 250

●●

●
●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●●
●

●

●
● ●

●
●

● ●●

●
●

●

● ●

●

●
●

●

●

0 100 250

●

●

●●
●

●
●

●

●
●●

●

0
50

15
0

Solar.R

O
zo

ne
5 10 15 20

Given : Wind

60
70

80
90

G
iv

en
 :

Te
m

p

Trellis

The best-known system for producing conditioning plots is

Cleveland’s Trellis, in S-PLUS. There is a similar system based

on Cleveland’s research in R, called lattice.

Trellis is not restricted to conditioning scatterplots: it allows

histograms, bo xplots, barcharts, and even 3-d plots.

One dramatic example of the usefulness of these plots is the

following graph of some repeatedly analyzed data on field trials

of barley varieties.

library(lattice)

data(barley)

dotplot(variety ~ yield | site, data = barley, groups = year,

key = simpleKey(levels(barley$year), space = "right"))

Dotplots: barley varieties

Barley Yield (bushels/acre)

20 30 40 50 60

Svansota
No. 462

Manchuria
No. 475

Velvet
Peatland
Glabron
No. 457

Wisconsin No. 38
Trebi

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Grand Rapids

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Duluth
Svansota

No. 462
Manchuria

No. 475
Velvet

Peatland
Glabron
No. 457

Wisconsin No. 38
Trebi

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

University Farm

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Morris
Svansota

No. 462
Manchuria

No. 475
Velvet

Peatland
Glabron
No. 457

Wisconsin No. 38
Trebi

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Crookston

20 30 40 50 60

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Waseca

1932
1931

●

●

Syntax notes

Trellis graphics are specified by a formula:

response~predictor|conditioning*variables

The conditioning variables must be discrete or be shingles

produced with a function such as equal.count.

Some Trellis functions (eg histogram) do not have a response

variable, and some (eg cloud, levelplot) have more than one

predictor variable.

The panel function that draws each subplot can be customised

either by specifying options or by writing a new panel function.

Read Cleveland’s Visualizing Data for examples (and because

everyone producing statistical graphics should read it).

Coplot: NY ozone

We can produce a conditioning plot of NY summer ozone with

the lattice package

xyplot(Ozone~Solar.R|equal.count(Temp,4)*equal.count(Wind,4),

data=airquality,

strip=strip.custom(var.name=c("Temperature","Wind speed")))

The labelling is slightly different from the coplot version

Coplot: NY ozone

Solar.R

O
zo

ne

0

50

100

150

0 100 200 300

●●
●

●
● ● ●

●

Temperature
Wind Speed

●

●

●
●

●
●

●

●

●

●
●

●
●

Temperature
Wind Speed

0 100 200 300

●

●

●

●
●

●
●

●

●

●
●

●
●

●

●

●

●
●

●

Temperature
Wind Speed

●

●

●
●

●●
●

●
●

● ●

●

●

●

●
●

●
●

●
●

●

●

●

●●
●

●●
●

●

●

Temperature
Wind Speed

●●
●● ●●●●

●
● ●● ● ●

●
●●

●
●

●

Temperature
Wind Speed

●
●

●
●

●
●

●

●
●

●

● ●
●●

● ●
●

●●
●

●
●

●

Temperature
Wind Speed

●●
●

●
●

●

●

●

●

●
●●

●
●

●

●
●●

●

●
●

●
●

Temperature
Wind Speed

0

50

100

150

●●
●

●

●

●
●

●

●

●

●

●
●●

●
●

●
●

●●
●

●

●
●

Temperature
Wind Speed

0

50

100

150

● ●●● ●● ●
●●

●●●

●● ● ●● ● ●
● ●●

●
●●

●
●

Temperature
Wind Speed

● ●●●
●

●●

● ●
●●

●●● ●
● ●●●

●

●

Temperature
Wind Speed

●
●

● ●●

●
●

●

● ●
●

●

●

● ●
●●

●●
●

Temperature
Wind Speed

● ●●
● ●●

●
●

●

● ●

●

●
●

●

●

Temperature
Wind Speed

● ●●
● ●● ●

●

●
●
●

●●
●

● ●●
● ●

● ● ●●● ● ●

Temperature
Wind Speed

0 100 200 300

● ●

●
●

●
● ●

●
●●

●●
●

●●
●

●
● ● ●

Temperature
Wind Speed

●
●

●
●

●

●
●

●

●
●●●

●
●

●

Temperature
Wind Speed

0 100 200 300

0

50

100

150

●
●

●●
●

●
●

●

●
●●

●

Temperature
Wind Speed

Stereo pairs

As an example of more advanced things that can be done: a

pointless example of 3-D graphics

par.set <-list(axis.line = list(col = "transparent"),
clip = list(panel = FALSE))

print(cloud(Sepal.Length ~ Petal.Length * Petal.Width,
data = iris, cex = .8,
groups = Species,
main = "Stereo",
screen = list(z = 20, x = -70, y = 3),
par.settings = par.set),

split = c(1,1,2,1), more = TRUE)
print(cloud(Sepal.Length ~ Petal.Length * Petal.Width,

data = iris, cex = .8,
groups = Species,
main = "Stereo",
screen = list(z = 20, x = -70, y = 0),
par.settings = par.set),

split = c(2,1,2,1))

Stereo pairs

Stereo

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●●

●●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●
●

●

●

●●

●●

●

●
●

●

● ● ●
● ●

●

●

●
●

●
●

●

●

●

●

●●

●

●●●

●

●
●

●
●

●

●

●

● ●
●

●

●

●

●

●
●

●

●●

●●
●

●

●

●
●

●

●●●
●

●●

●

●

●

●

●●

●
●●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●●
●●●●●

●

●
●

●

●
●

●

●

●

●●

●

●
●

Petal.Length

Petal.Width

Sepal.Length

Stereo

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●●●

●

●

●

●

●

●

●●

●
●

●

●

●

●●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●●●

●

●●

●

●
●●

●

●

●

●●

●

●●

●

●

●

●

●

●●

● ●●●

●

●
●

●

●●●
●

●●

●

●

●

●

●●

●
●

●

●●

●●

●

●●

●

●
●

●

●

●

●●●
●●●●●●

●

●

●

●
●

●

●

●

●●

●

●
●

Petal.Length

Petal.Width

Sepal.Length

Mathematical annotation

An expression can be specified in R for any text in a graph

(help(plotmath) for details). Here we annotate a graph drawn

with polygon.

x<-seq(-10,10,length=400)
y1<-dnorm(x)
y2<-dnorm(x,m=3)
par(mar=c(5,4,2,1))
plot(x,y2,xlim=c(-3,8),type="n",

xlab=quote(Z==frac(mu[1]-mu[2],sigma/sqrt(n))),
ylab="Density")

polygon(c(1.96,1.96,x[240:400],10),
c(0,dnorm(1.96,m=3),y2[240:400],0),
col="grey80",lty=0)

lines(x,y2)
lines(x,y1)
polygon(c(-1.96,-1.96,x[161:1],-10),

c(0,dnorm(-1.96,m=0),y1[161:1],0),
col="grey30",lty=0)

polygon(c(1.96,1.96,x[240:400],10),
c(0,dnorm(1.96,m=0),y1[240:400],0),
col="grey30")

Mathematical annotation

legend(4.2,.4,fill=c("grey80","grey30"),
legend=expression(P(abs(Z)>1.96,H[1])==0.85,

P(abs(Z)>1.96,H[0])==0.05),bty="n")
text(0,.2,quote(H[0]:~~mu[1]==mu[2]))
text(3,.2,quote(H[1]:~~mu[1]==mu[2]+delta))

Mathematical annotation

−2 0 2 4 6 8

0.
0

0.
1

0.
2

0.
3

0.
4

Z =
µ1 − µ2

σ n

D
en

si
ty

P(Z > 1.96, H1) = 0.85
P(Z > 1.96, H0) = 0.05

H0 : µ1 = µ2 H1 : µ1 = µ2 + δ

Managing code and data

Options for storage

• Workspace. When R starts it will read in the file .RData, and

when it exits you are given the chance to save the workspace

to that file (you can save it at any time with save.image()).

This saves everything except loaded packages and is the

equivalent of the .Data directory in S-PLUS.

• Binary files. The save() command puts specified functions

and data in a binary file. This file can be attach()ed (like a

directory in S-PLUS) or load()ed.

• Source code. Instead of saving results and data they can be

recreated as needed from source code.

Multiple projects

There are two extreme ways to handle multiple projects in R

• Store each project in a separate directory and use the .RData

file to hold everything. If you want to share functions or

objects with another project then explicitly export and import

them. The .RData file is primary; any transcripts or source

files are documentation.

• Store everything as source code. For every piece of analysis

have a file that reads in data, processes it, and possibly saves

a modified version to a new file. The source is primary, any

saved files are just a labour-saving device.

The same choices apply to programming as well as data analysis,

and to other dialects of S.

Workspace is primary

The first method is common among new users of S-PLUS, partly

because S-PLUS automatically saves your workspace. Many of

us subsequently find that we aren’t sufficiently organised to be

sure that we keep records of how every analysis was done.

This approach is (even) riskier in R than in S-PLUS.

• In R the workspace is only saved when you explicitly ask for

it; in S-PLUS it is saved frequently

• In R a corrupted .RData is likely to be completely unreadable,

in S-PLUS many objects will still be recoverable.

It makes sense for short-term projects, especially if data loss is

not critical, or for very careful people.

Source is primary

Managing projects is easy when everything can be reconstructed

from source files. These files and intermediate data files can be

stored in a project directory where they are easy to find and are

automatically time-stamped by the operating system.

Emacs Speaks Statistics (ESS) is particularly useful for this style

of R use. With R running in an Emacs window you can run

sections of code with a few keystrokes. The S-PLUS script

window also offers many of the features of ESS.

Logging

One problem with interactive data analysis is keeping a good

log of your analysis. This problem can be avoided by using

interactive analysis only to construct a script that is then run to

provide the final results.

Other options:

• ESS will capture a complete transcript, as will the Windows

or Mac GUIs and the JGR GUI

• in R, sink(filename, split=TRUE) will send all output to both

filename and the screen. Use sink() before quitting to close

the file.

Note that none of these will log graphics output.

Merging and matching

The data for an analysis often do not come in a single file.
Combining multiple files is necessary.

If two data sets have the same individuals in the same order,
they can simply be pasted together side by side.

CHS baseline data

baseline <- read.spss("I:/DISTRIB/BASEBOTH.SAV", to.data.frame=TRUE)

Events data (eg death, heart attack, ...)

events <- read.spss("I:/SAVEFILES/EVSUM04.SAV", to.data.frame=TRUE)

if (!all(baseline$IDNO==events$IDNO)) {

stop("PANIC: They don’t match!")

} else {

alldata <- cbind(baseline, events[,c("TTODTH","DEATH",

"TTOMI","INCMI")])

}

Merging: order

The data might need to be sorted first

index1 <- order(baseline$IDNO)

baseline <- baseline[index1,]

index2 <- order(events$IDNO)

events <- events[index2,]

if (!all(baseline$IDNO==events$IDNO)) {

stop("PANIC: They still don’t match!")

} else {

alldata <- cbind(baseline, events[,c("TTODTH","DEATH",

"TTOMI","INCMI")])

}

Note that order(baseline$IDNO) gives a subset of row numbers

containing all the rows but in a different (increasing) order.

Merging: merge

Or there might be different rows in the two data sets

• Some people are missing from one or other data set (eg

baseline and year 5 visits)

• Some people have multiple records in one data set (eg

baseline data and all hospitalisations

The merge function can do an database outer join, giving a data

set that has all the possible matches between a row in one and

a row in the other

Merging: merge

combined <- merge(baseline, hospvisits, by="IDNO", all=TRUE)

• by=IDNO says that the IDNO variable indicates individuals who

should be matched.

• all=TRUE says that even people with no records in the

hospvisits data set should be kept in the merged version.

How does it work: match

You could imagine a dumb algorithm for merging

for(row in firstdataset){

for(otherrow in seconddataset){

if (row$IDNO==otherrow$IDNO)

##add the row to the result

}

}

More efficiently, the match function gives indices to match one

variable to another

> match(c("B","I","O","S","T","A","T"),LETTERS)

[1] 2 9 15 19 20 1 20

> letters[match(c("B","I","O","S","T","A","T"),LETTERS)]

[1] "b" "i" "o" "s" "t" "a" "t"

Reshaping

Sometimes data sets are the wrong shape. Data with multiple

observations of similar quantities can be in long form (multiple

records per person) or wide form (multiple variables per person).

Example: The SeattleSNPs genetic variation discovery resource

supplies data in a format

SNP sample al1 al2

000095 D001 C T

000095 D002 T T

000095 D003 T T

so that data for a single person is broken across many lines. To

convert this to one line per person

> data<-read.table("http://pga.gs.washington.edu/data/il6

/ilkn6.prettybase.txt",

col.names=c("SNP","sample","allele1","allele2"))

> dim(data)

[1] 2303 4

> wideData<-reshape(data, direction="wide", idvar="sample",

timevar="SNP")

> dim(wideData)

[1] 47 99

> names(wideData)

[1] "sample" "allele1.95" "allele2.95" "allele1.205"

[5] "allele2.205" "allele1.276" "allele2.276" "allele1.321"

[9] "allele2.321" "allele1.657" "allele2.657" "allele1.1086"

...

• direction="wide" says we are going from long to wide format

• idvar="sample" says that sample identifies the rows in wide

format

• timevar="SNP" says that SNP identifies which rows go into

the same column in wide form (for repeated measurements

over time it would be the time variable)

Broken down by age and sex

A common request for Table 1 or Table 2 in a medical paper

is to compute means and standard deviations, percentages, or

frequency tables of many variables broken down by groups (eg

case/control status, age and sex, exposure,...).

That is, we need to apply a simple computation to subsets of

the data, and apply it to many variables. One useful function

is by(), another is tapply(), which is very similar (but harder to

remember).

> by(airquality$Ozone, list(month=airquality$Month),

mean, na.rm=TRUE)

month: 5

[1] 23.61538

--

month: 6

[1] 29.44444

--

month: 7

[1] 59.11538

--

month: 8

[1] 59.96154

--

month: 9

[1] 31.44828

Notes

• The first argument is the variable to be analyzed.

• The second argument is a list of variable defining sub-
sets. In this case, a single variable, but we could do
list(month=airquality$Month, toohot=airquality$Temp>85) to
get a breakdown by month and temperature

• The third argument is the analysis function to use on each
subset

• Any other arguments (na.rm=TRUE) are also given to the
analysis function

• The result is really a vector (with a single grouping variable)
or array (with multiple grouping variables). It prints differ-
ently.

Confusing digression: str()

How do I know it is an array? Because str() summarises the

internal structure of a variable.

> a<- by(airquality$Ozone, list(month=airquality$Month,

toohot=airquality$Temp>85),

mean, na.rm=TRUE)

> str(a)

by [1:5, 1:2] 23.6 22.1 49.3 40.9 22.0 ...

- attr(*, "dimnames")=List of 2

..$ month : chr [1:5] "5" "6" "7" "8" ...

..$ toohot: chr [1:2] "FALSE" "TRUE"

- attr(*, "call")= language by.data.frame(data =

as.data.frame(data), INDICES = INDICES,

FUN = FUN, na.rm = TRUE)

- attr(*, "class")= chr "by"

One function, many variables

There is a general function, apply() for doing something to rows

or columns of a matrix (or slices of a higher-dimensional array).

> apply(psa[,1:8],2,mean,na.rm=TRUE)

id nadir pretx ps bss grade

25.500000 16.360000 670.751163 80.833333 2.520833 2.146341

grade age obstime

2.146341 67.440000 28.460000

In this case there is a special, faster, function colMeans, but the

apply can be used with other functions such as sd, IQR, min,...

apply

• the first argument is an array or matrix or dataframe

• the third argument is the analysis function

• the second argument says which margins to keep (1=rows,

2=columns, ...), so 2 means that the result should keep the

columns: apply the function to each column.

• any other arguments are given to the analysis function

There is a widespread belief that apply() is faster than a for()

loop over the columns. This is a useful belief, since it encourages

people to use apply(), but it is not true.

New functions

Suppose you want the mean and standard deviation for each

variable. One solution is to apply a new function. Watch

carefully,...

> apply(psa[,1:8], 2, function(x) c(mean=mean(x,na.rm=TRUE),

stddev=sd(x,na.rm=TRUE)))

id nadir pretx ps bss grade

mean 25.50000 16.3600 670.7512 80.83333 2.5208333 2.1463415

stddev 14.57738 39.2462 1287.6384 11.07678 0.6838434 0.7924953

age obstime

mean 67.440000 28.46000

stddev 5.771711 18.39056

New function

function(x) c(mean=mean(x,na.rm=TRUE),

stddev=sd(x,na.rm=TRUE))

translates as: “If you give me a vector, which I will call x, I will

mean it and sd it and give you the results”

We could give this function a name and then refer to it by name

mean.and.sd <- function(x) c(mean=mean(x,na.rm=TRUE),

stddev=sd(x,na.rm=TRUE))

apply(psa[,1:8], 2, mean.and.sd)

which would save typing if we used the function many times.

Note that giving the function a name is not necessary, any more

than giving 2 a name.

by() revisited

Now we know how to write simple functions we can use by()

more generally

> by(psa[,1:8], list(remission=psa$inrem),

function(subset) round(apply(subset, 2, mean.and.sd), 2))

remission: no

id nadir pretx ps bss grade age obstime

mean 31.03 22.52 725.99 79.71 2.71 2.11 67.17 21.75

stddev 11.34 44.91 1362.34 10.29 0.52 0.83 5.62 15.45

remission: yes

id nadir pretx ps bss grade age obstime

mean 11.29 0.53 488.45 83.57 2.07 2.23 68.14 45.71

stddev 12.36 0.74 1044.14 12.77 0.83 0.73 6.30 13.67

Notes

function(subset) round(apply(subset, 2, mean.and.sd), 2)

translates as “If you give me a data frame, which I will call subset,

I will apply the mean.and.sd function to each variable, round to

2 decimal places, and give you the results”

Relational databases

Data storage and data management for large files is more

appropriately done in a relational database.

R has packages for interfaces to any database via ODBC and

JDBC, and to specific packages directly: Oracle, PostgreSQL,

MySQL, SQLite.

These interfaces allow SQL queries to be sent to a database, and

for data tables to be sent to and from R (subject to database

permissions).

The survey package can use data in a database table or view,

loading it only as necessary. The biglm package can fit linear

models to very large data sets stored in a relational database.

Example

NHANES III imputation data stored in a SQLite database

> library(RSQLite}
> sqlite<-dbDriver("SQLite")
> nhanesdb<-dbConnect(sqlite,"imp.db")
> dbListTables(nhanesdb)
[1] "core" "imp1" "imp2" "imp3" "imp4" "imp5"

> dbGetQuery(nhanesdb,"select count(*) from core")
count(*)

1 33994
> dbGetQuery(nhanesdb,"select * from core limit 1")

row_names SEQN DMPFSEQ DMPSTAT DMARETHN DMARACER DMAETHNR HSSEX
1 1 3 3872 2 3 1 1 1

HSDOIMO HSAGEIR HSAGEU HSAITMOR HSFSIZER HSHSIZER DMPCNTYR DMPFIPSR
1 1 21 2 261 4 4 37 6

DMPMETRO DMPCREGN SDPPHASE SDPPSU6 SDPSTRA6 WTPFQX6 WTPQRP1 WTPQRP2
1 1 4 1 1 44 1523 657.12 405.01
...

Example

Creating complete data sets requires joining the core and
imputation data sets

dbSendQuery(nhanesdb, "create view set1 as select * from

core inner join imp1 using(SEQN)")

so that set1 contains the core variables and the first set of
imputations.

We can read in the whole table with

set1 <- dbReadTable(nhanesdb, "set1")

or just read in a few variables

set1 <- dbGetQuery(nhanesdb, "select SDPPSU6, SDPSTRA6, WTPFQX6,

HSSEX, HSAGEIR, TCPMI from set1")

Example

The interface also supports more advanced SQL features such

as transaction management, incremental reading of large data

sets, stored procedures, connecting to separate database servers.

The RSQLite package is the easiest to manage for simple

databases, since it includes the entire database system and since

a database is just a file.

Configuring interfaces to existing database servers will probably

need help from your database administrator.

Capturing output

To send text output to a file

sink("filename")

and to cancel it

sink()

• Error messages are not diverted.

• Use sink("filename",split=TRUE) to send output to the file

and to the screen

To capture output in a variable, use capture.output()

> output <- capture.output(example(by))

> length(output)

[1] 107

> output[1]

[1] ""

> output[2]

[1] "by> require(stats)"

> output[3]

[1] "[1] TRUE"

Capturing pretty output

Having chunks of output in typewriter font in the middle of the

document is convenient but you may want something prettier.

The xtable() function in the xtable package will produce LATEX

or HTML tables from matrices or from statistical model output.

The HTML can be saved to a file and read into eg Word or

Powerpoint.

Sweave

Sweave is a system for reproducible data analysis

1. Write a report in a mixture of LATEX and R

2. Process the report with Sweave, to run the code and put the

output in the document.

Ensures that the output (including graphics) in the document

matches the input. The odfWeave package does the same thing

with OpenOffice instead of LATEX, and Duncan Temple Lang is

working on a system for modern versions of MS Word.

Example: package vignettes

Input file (survey/inst/doc/survey.Rnw/)

We have a cluster sample in which 15 school districts were sampled and
then all schools in each district. This is in the data frame
\texttt{apiclus1}, loaded with \texttt{data(api)}. The two-stage sample is
defined by the sampling unit (\texttt{dnum}) and the population
size(\texttt{fpc}). Sampling weights are computed from the population
sizes, but could be provided separately.
<<>>=
data(api)
dclus1 <- svydesign(id = ~dnum, weights = ~pw, data = apiclus1, fpc = ~fpc)
@

The \texttt{svydesign} function returns an object containing the survey data and
metadata.

<<>>=
summary(dclus1)
@

Sweave extracts R code chunks between <<>>= and @ and runs

them, creating a LATEX document, which is then processed into

PDF

Example: package vignettes

A survey analysis example

Thomas Lumley

March 9, 2010

This document provides a simple example analysis of a survey data set, a
subsample from the California Academic Performance Index, an annual set of
tests used to evaluate California schools. The API website, including the original
data files are at http://api.cde.ca.gov. The subsample was generated as a
teaching example by Academic Technology Services at UCLA and was obtained
from http://www.ats.ucla.edu/stat/stata/Library/svy_survey.htm.

We have a cluster sample in which 15 school districts were sampled and then
all schools in each district. This is in the data frame apiclus1, loaded with
data(api). The two-stage sample is defined by the sampling unit (dnum) and
the population size(fpc). Sampling weights are computed from the population
sizes, but could be provided separately.

> data(api)

> dclus1 <- svydesign(id = ~dnum, weights = ~pw, data = apiclus1,

+ fpc = ~fpc)

The svydesign function returns an object containing the survey data and
metadata.

> summary(dclus1)

1 - level Cluster Sampling design
With (15) clusters.
svydesign(id = ~dnum, weights = ~pw, data = apiclus1, fpc = ~fpc)
Probabilities:

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.02954 0.02954 0.02954 0.02954 0.02954 0.02954
Population size (PSUs): 757
Data variables:
[1] "cds" "stype" "name" "sname" "snum" "dname"
[7] "dnum" "cname" "cnum" "flag" "pcttest" "api00"
[13] "api99" "target" "growth" "sch.wide" "comp.imp" "both"
[19] "awards" "meals" "ell" "yr.rnd" "mobility" "acs.k3"
[25] "acs.46" "acs.core" "pct.resp" "not.hsg" "hsg" "some.col"
[31] "col.grad" "grad.sch" "avg.ed" "full" "emer" "enroll"
[37] "api.stu" "fpc" "pw"

1

Functions

We saw simple functions earlier.

function(x) c(mean = mean(x), stddev = sd(x))

Functions are more important in R than in other statistical

packages and more important than in many programming

languages.

S, and now R, are deliberately designed to blur the distinction

between users and programmers. R is a good language for rapid

development of tools: whether the tool is a customized barplot

or a package of survey functions.

This comes at the expense of speed and memory efficiency, but

it doesn’t take many hours of programming time to pay for a

gigabyte of memory.

Example: ROC curve

Plotting the sensitivity and specificity of a continuous variable

as a predictor of a binary variable in an ROC curve.

ROC <- function(test, disease){

cutpoints <- c(-Inf, sort(unique(test)), Inf)

sensitivity<-sapply(cutpoints,

function(result) mean(test>result & disease)/mean(disease))

specificity<-sapply(cutpoints,

function(result) mean(test<=result & !disease)/mean(!disease))

plot(sensitivity, 1-specificity, type="l")

abline(0,1,lty=2)

return(list(sens=sensitivity, spec=specificity))

}

Example: ROC curve

> x<-rnorm(100,mean=0)

> y<-rnorm(100, mean=1)

> isx<-rep(c(TRUE,FALSE),each=100)

> ROC(c(x,y), isx)

$sens

[1] 1.00 0.99 0.98 0.97 0.96 0.95 0.94 0.93 0.93 0.93 0.92 0.91 0.90 0.89 0.88 0.87 0.86 0.86 0.85 0.85

[21] 0.85 0.84 0.83 0.82 0.81 0.80 0.79 0.78 0.77 0.76 0.75 0.74 0.73 0.72 0.71 0.70 0.70 0.70 0.69 0.69

...

Example: ROC curve

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

sensitivity

1
−

 s
pe

ci
fic

ity

Notes

• sort sorts a vector, so sort(unique(test)) are the ordered

observed values. -Inf and Inf are added to ensure that the

curve gets to (0,0) and (1,1).

• disease is a logical variable (or treated as one). !disease

means ”not disease”

• Variables created inside the function are local

• In R, variables that are visible where a function is defined

(eg test and disease) will be visible inside the function. This

isn’t true in S-PLUS, where this ROC function won’t work.

Read 3.3.1 and 7.12 in the R FAQ if you are curious.

In S-PLUS we would have to write

Notes

sensitivity<-sapply(cutpoints,

function(result,test, disease)

mean(test>result & disease)/mean(disease),

test=test,

disease=disease)

making this a less attractive approach.

• return() is optional. Recall that every expression in R has

some value: the value of the last expression will be returned.

• rep() repeats things. Two most common versions are

rep(something, times) and rep(somethings, each=times), but

there are more complex versions.

Theoretical note

In principle, the use of user-written functions and second-order

functions such as apply() and by() makes it possible never to

change the value of a variable.

Variables can then be thought of as names for values, as in math;

rather than storage for values, as in C or Fortran.

The extremist form of this position is called ”functional pro-

gramming”. It is a useful idea in moderation: code is easier to

understand when a variable doesn’t change values.

Historical and cultural note

There have always been multiple versions of the assignment

operator available in R and S, not always the same ones.

• In the Old Days, R and S-PLUS allowed <- and _. The

underscore actually printed as a left arrow on some Bell Labs

terminals.

• In S-PLUS since 5.0 and R since 1.4.0 = has been allowed as

an alternative to <-.

• In R since 1.8.0 the _ has been removed as an assignment

operator and is now an ordinary character that can be used

in variable names.

In R, = can’t be used in some places (where you probably

wouldn’t have meant to do an assignment), so that

a = 4

if(a = 5) b = 4

print(a)

gives 5 on S-PLUS and a syntax error in R.

I use <-, but there’s nothing wrong with using = if you prefer.

Do get used to leaving spaces around it.

Don’t use _, even in S-PLUS where it is legal. You can’t imagine

how much some people hate it.

Example: computing the median

Suppose we wanted to write a function to compute the median.

A simple algorithm is to sort the data and take the middle

element.

ourmedian <- function(x){

n<-length(x)

return(sort(x)[(n+1)/2])

}

Notes

• sort() sorts a vector

• return() is optional. Remember that everything is an

expression and produces a value. If there is no return()

statement the value of the function is the value of the last

expression evaluated.

For even sample sizes we might prefer the average of the two

middle values

ourmedian <- function(x){

n<-length(x)

if (n %% 2==1) ## odd

sort(x)[(n+1)/2]

else { ## even

middletwo <- sort(x)[(n/2)+0:1]

mean(middletwo)

}

}

We need to handle missing values

ourmedian <- function(x, na.rm=FALSE){

if(any(is.na(x))) {

if(na.rm)

x<-x[!is.na(x)]

else

return(NA)

}

n<-length(x)

if (n %% 2==1) ## odd

sort(x)[(n+1)/2]

else { ## even

middletwo <- sort(x)[(n/2)+0:1]

mean(middletwo)

}

}

We might also want to

• Check that x is numeric, so that a median makes sense

• Check that n is not 0

The built-in function also takes advantage of an option to sort()

that stops sorting when specific indices (eg (n+1)/2) are correct.

This is faster for large vectors (by 1sec=50% for n = 106).

Simulating Data

S has a wide range of functions to handle mathematical

probability distributions

• pnorm gives the Normal cumulative distribution function

• qnorm is the inverse: the Normal quantile function

• dnorm is the Normal density

• rnorm simulates data from Normal distributions

Similar sets of p,q,d,r functions for Poisson, binomial, t, F,

hypergeometric, χ2, Beta,...

Also sample for sampling from a vector, replicate for repeating

a computation.

Bootstrap

The basic problem of probability is: Given a distribution F what

is the distribution of a statistic T

Statisticians have a harder problem: Given data that come from

an unknown distribution F , what is the distribution of a statistic

T?

We do have an estimate of the true data distribution. It should

look like the sample data distribution. (we write Fn for the

sample data distribution and F for the true data distribution). We

can work out the sampling distribution of Tn(Fn) by simulation,

and hope that this is close to that of Tn(F).

Simulating from Fn just involves taking a sample, with replace-

ment, from the observed data. This is called the bootstrap. We

write F∗n for the data distribution of a resample.

Too good to be true?

There are obviously some limits to this

• It requires large enough samples for Fn to be close to F .

• It works better for some statistics (eg mean, variance) than

others (eg median, quantiles)

• It doesn’t work at all for some statistics (eg min, max,

number of unique values)

The reason for the difference between statistics is that Fn needs

to be ”close to” F in an appropriate sense of ”close” for the

statistic. Precise discussions of this involve infinite-dimensional

vector spaces.

Uses of bootstrap

There are two main uses

• When you know the distribution of Tn is normal with mean
θ, you just don’t know how to compute the variance

• With a well-behaved statistic where the sample size is a little
small for the Normal approximation.

It can also be used when you don’t know what the asymptotic
distribution is, but then you do need quite a bit of analysis to be
sure that the bootstrap works for this statistic.

There are many ways of actually doing the bootstrap compu-
tations. In most cases they all work, but in difficult cases it
matters which one you use. Read a good book (eg Davison &
Hinkley Bootstrap methods and their application)

Example

Median bilirubin in PBC data

data(pbc, package="survival")

resample.a.median<-function(x){

xstar<- sample(x, size=length(x), replace=TRUE)

median(xstar)

}

lots.of.medians<-replicate(1000, resample.a.median(pbc$bili))

hist(lots.of.medians, col="peachpuff",prob=TRUE)

Example

Histogram of lots.of.medians

lots.of.medians

D
en

si
ty

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

0
2

4
6

Notes

• sample() takes a sample from a given vector. This can

be with or without replacement and with equal or unequal

probabilities.

• replicate executes an expression many times and returns the

results. It is tidier than a loop or apply.

• data() has a package argument for when you want the

dataset but not the whole package.

• The histogram is fairly discrete, because the data are rounded

to 2 decimal places: the true sampling distribution of the

median is discrete. The true distribution of serum bilirubin

isn’t, but we have no data from that distribution.

How well does it work?

These graphs show the 5% and 95% points of the estimated

sampling distribution. 90% of these should cover the true value.

We need to use known distributions for this.

library(MASS) ## Modern Applied Statistic in S (V&R)

resample.a.corr<-function(xy){

index <- sample(nrow(xy),size=nrow(xy),replace=TRUE)

cor(xy[index,1],xy[index,2])

}

lots.of.corr<-replicate(30, {

dat<-mvrnorm(50,c(0,0), Sigma=matrix(c(1,.5,.5,1),2))

replicate(400, resample.a.corr(dat))

})

How well does it work?

qq<-apply(lots.of.corr,2,quantile, probs=c(0.05,0.95))

plot(1,1,xlim=c(1,30),ylim=range(c(0.5,qq)),ylab="Correlation",xlab="")

abline(h=0.5,lty=2)

in.interval<-qq[1,]<0.5 & qq[2,]>0.5

segments(1:30,qq[1,],1:30,

qq[2,],col=ifelse(in.interval,"grey50","purple"),lwd=2)

How well does it work?

●

0 5 10 15 20 25 30

0.
2

0.
4

0.
6

0.
8

C
or

re
la

tio
n

Notes

• We need to simulate the entire bootstrap process — draw a

real sample, take 400 resamples from it — thirty times

• We resample rows, by sampling from numbers 1...nrow(xy)

and then apply this as a subset index.

• 400 is a minimal reasonable number for boostraps and most

simulations. The uncertainty in the 90% range is about

1.5%, in a 95% range would be about 3.5%. Usually between

1000 and 10,000 is a good number.

• The percentile bootstrap will always give estimates between

-1 and 1 for correlation (unlike the t-bootstrap)

• The percentile bootstrap isn’t improved by transforming the

statistic, the t may be, eg, for correlation, bootstrapping

z = tanh−1 r

Lower quartile

resample.a.q25<-function(x){

x <- sample(x,length(x),replace=TRUE)

quantile(x, prob=0.25)

}

lots.of.q25<-replicate(30, {

dat<-rnorm(20)

replicate(400, resample.a.q25(dat))

})

qq<-apply(lots.of.q25,2,quantile, probs=c(0.05,0.95))

plot(1,1,xlim=c(1,30),ylim=range(qq),ylab="Lower quartile",xlab="")

abline(h=qnorm(0.25),lty=2)

in.interval<-qq[1,]<qnorm(0.25) & qq[2,]>qnorm(0.25)

segments(1:30,qq[1,],1:30,

qq[2,],col=ifelse(in.interval,"grey50","purple"),lwd=2)

Lower quartile

●

0 5 10 15 20 25 30

−
1.

5
−

0.
5

0.
5

Lo
w

er
 q

ua
rt

ile

Minimum

resample.a.min<-function(x){

x <- sample(x,length(x),replace=TRUE)

min(x)

}

lots.of.min<-replicate(30, {

dat<-rgamma(20,2,2)

replicate(400, resample.a.min(dat))

})

qq<-apply(lots.of.min,2,quantile, probs=c(0.05,0.95))

plot(1,1,xlim=c(1,30),ylim=range(c(-0.5,qq)),ylab="Minimum",xlab="")

abline(h=0,lty=2)

in.interval <- qq[1,] < 0 & qq[2,]> 0

segments(1:30,qq[1,],1:30,

qq[2,],col=ifelse(in.interval,"grey50","purple"),lwd=2)

Minimum

●

0 5 10 15 20 25 30

−
0.

4
0.

0
0.

4

M
in

im
um

Bootstrap packages

You don’t have to write your own bootstrap functions: there are

two packages

• boot, associated with a book by Davison and Hinkley, and

written by Angelo Canty

• bootstrap, associated with book by Efron and Tibshirani

The boot package comes with R and is more comprehensive.

S-PLUS also has nice bootstrap functions written by Tim

Hesterberg (then at Insightful, now at Google).

Debugging and optimization

Premature optimization is the root of all evil

Donald Knuth

The first task when programming is to get the program correct,

which is easier if it is written more simply and clearly.

Some clarity optimizations make the code faster, eg operating on

whole vectors rather than elements. Some have no real impact,

eg using *apply functions. Some make the code slower, like

adding names to vectors.

When the code works correctly, the next step is to find out which

parts, if any, are too slow, and then speed them up. This requires

measurement, rather than guessing.

Timing

• R and S-PLUS both have proc.time(), which returns the
current time. Save it before a task and subtract from the
value after a task.

• S-PLUS has sys.time(expression), R has system.time() to
time the evaluation of expression

• In R, Rprof(filename) turns on the profiler, and Rprof(NULL)

turns it off. The profiler writes a list of the current
functions being run to filename many times per second.
summaryRprof(filename) summarizes this to report how much
time is spent in each function.

Remember that a 1000-fold speedup in a function that uses 10%
of the time is less helpful than a 30% speedup in a function that
uses 50% of the time.

Memory

• R for windows has memory.size, which can report either cur-

rent allocation or maximum ever allocated; on all platforms

gc() will report maximum allocation since the last call to

gc(reset=TRUE).

• R can be compiled with a memory profiler, which tracks

where in the code memory is allocated.

Debugging

• traceback() shows where S was at the last error: what

function it was in, where this was called from, and so on

back to your top-level command.

• options(error=recover) starts the debugger as soon as an

error occurs.

• browser() starts the debugger at this point in your code.

• options(warn=2) turns warnings into errors.

• debug(fname) starts the debugger when function fname() is

called.

The debugger gives you an interactive command prompt inside

your function, so you can step through the code, look at

variables, evaluate any code, etc.

Debugging: trace

trace() is a more powerful and flexible interface to the debugger.

For example, we can set the debugger to start on statement 4

of ourmedian if the number of observations is zero.

> trace(ourmedian, tracer=quote(if(n==0) browser()), at=4)

> x<-rnorm(10)

> ourmedian(x)

Tracing ourmedian(x) step 4

[1] -0.7614219

> ourmedian(x[x>0])

Tracing ourmedian(x[x > 0]) step 4

[1] 0.5219192

> ourmedian(x[x>2])

Tracing ourmedian(x[x > 2]) step 4

Called from: ourmedian(x[x > 2])

Browse[1]>

Faster code

• Operations on whole vectors are fast.

• Matrix operations may be faster even than naive C code

• Functions that have few options and little error checking are

faster: eg sum(x)/length(x) is faster than mean(x)

• Allocating memory all at once is faster than incremental al-

location: x<-numeric(10000); x[i]<-f(i) rather than x<-c(x,

f(i))

• Data frames are much slower than matrices (especially large

ones).

• Running out of memory makes code much slower, especially

under Windows.

If none of this works, coding a small part of the program in C

may make it hundreds of times faster.

A very little on objects

Many functions in R return objects, which are collections of

information that can be operated on by other functions.

In more extreme object-oriented languages objects have no user-

serviceable parts. In R you can always get direct access to the

internals of an object. You shouldn’t use this access if there is

another way to get the information: the developer may change

the internal structure and break your code.

Use str and names to guess the internal structure.

Generics and methods

Many functions in R are generic. This means that the function

itself (eg plot, summary, mean) doesn’t do anything. The work is

done by methods that know how to plot, summarize or average

particular types of information. Earlier I said this was done by

magic. Here is the magic.

If you call summary on a data.frame, R works out that the correct

function to do the work is summary.data.frame and calls that

instead. If there is no specialized method to summarize the

information, R will call summary.default

You can find out all the types of data that R knows how to

summarize with two functions

> methods("summary")

[1] summary.Date summary.POSIXct summary.POSIXlt

[4] summary.aov summary.aovlist summary.connection

[7] summary.data.frame summary.default summary.ecdf*

[10] summary.factor summary.glm summary.infl

[13] summary.lm summary.loess* summary.manova

[16] summary.matrix summary.mlm summary.nls*

[19] summary.packageStatus* summary.ppr* summary.prcomp*

[22] summary.princomp* summary.stepfun summary.stl*

[25] summary.table summary.tukeysmooth*

Non-visible functions are asterisked

> getMethods("summary")

NULL

There are two functions because S has two object systems, for

historical reasons.

Methods

The class and method system makes it easy to add new types

of information (eg survey designs) and have them work just like

the built-in ones.

Some standard methods are

• print, summary: everything should have these

• plot or image: if you can work out an obvious way to plot

the thing, one of these functions should do it.

• coef, vcov: Anything that has parameters and variance

matrices for them should have these.

• anova, logLik, AIC: a model fitted by maximum likelihood

should have these.

• residuals: anything that has residuals should have this.

New classes

Creating a new class is easy

class(x) <- "duck"

R will now automatically look for the print.duck method, the

summary.duck method, and so on.

There is no checking of structure: you need to make sure that

x can print.duck, walk.duck, quack.duck.

The (newer, slightly more complicated) S4 class system has

formal class structures and does check contents.

ROC curves (again)

A slightly more efficient version of the ROC function, and one

that handles ties in the test variable:

drawROC<-function(T,D){

DD <- table(-T,D)

sens <- cumsum(DD[,2])/sum(DD[,2])

mspec <- cumsum(DD[,1])/sum(DD[,1])

plot(mspec, sens, type="l")

}

Note that we use the vectorized cumsum rather than the implied

loop of sapply.

We want to make this return an ROC object that can be plotted

and operated on in other ways

ROC curve object

ROC<-function(T,D){

DD <- table(-T,D)

sens <- cumsum(DD[,2])/sum(DD[,2])

mspec <- cumsum(DD[,1])/sum(DD[,1])

rval <- list(tpr=sens, fpr=mspec,

cutpoints=rev(sort(unique(T))),

call=sys.call())

class(rval)<-"ROC"

rval

}

Instead of plotting the curve we return the data needed for the

plot, plus some things that might be useful later. sys.call() is

a copy of the call.

Methods

We need a print method to stop the whole contents of the object

being printed

print.ROC<-function(x,...){

cat("ROC curve: ")

print(x$call)

}

Methods

A plot method

plot.ROC <- function(x, xlab="1-Specificity",

ylab="Sensitivity", type="l",...){

plot(xfpr, xtpr, xlab=xlab, ylab=ylab, type=type, ...)

}

We specify some graphical parameters in order to set defaults

for them. Others are automatically included in

Methods

We want to be able to add lines to an existing plot

lines.ROC <- function(x, ...){

lines(xfpr, xtpr, ...)

}

and also be able to identify cutpoints

identify.ROC<-function(x, labels=NULL, ...,digits=1)

{

if (is.null(labels))

labels<-round(x$cutpoints,digits)

identify(xfpr, xtpr, labels=labels,...)

}

Statistical Modelling in S

The systematic part of a model is specified as a model formula

with basic structure

outcome~exposure*modifier+confounder

• The left-hand side is the outcome (response, independent)

variable, the right-hand side describes the predictors.

• The * specifies an interaction and the corresponding main

effects.

• Factors (eg race, subtype of disease) are coded by default

with indicator variables for all except the first category.

• terms can be variables, simple expressions, or composite

objects

Examples

• depress~rural*agegp+partner+parity+income Does the risk of

postnatal depression vary between urban and rural areas,

separately for each age group, adjusted for having a domestic

partner, previous numbr of pregnancies, income?

• asthma~pm25+temp+I(temp^2)+month How does the number of

hospital admissions for asthma vary with fine particulate air

pollution, adjusted for temperature and month of the year?

• log(pm25)~temp+stag+month+lag(temp,1) Predict (log-transformed)

fine particulate air pollution from temperature, air stagna-

tion, month, and yesterday’s temperature

• Surv(ttoMI,MI)~LDL+age+sex+hibp+diabetes How does LDL choles-

terol predict (time to) myocardial infarction after adjusting

for age, sex, hypertension, and diabetes?

Generalised linear models

Generalised linear models (linear regression, logistic regression,

poisson regression) are handled by the glm() function. This

requires

• A model formula

• A dataframe containing the variables [optional]

• A model family:

binomial() logistic regression

gaussian() linear regression

poisson() Poisson regression

and others less commonly used

glm(asthma~pm25+temp+I(temp^2)+month,

data=pmdat,family=poisson())

Model objects

Typical statistics packages fit a model and output the results. In

S a model object is created that stores all the information about

the fitted model. Coefficients, diagnostics, and other model

summaries are produced by methods for this object.

We saw some of these methods earlier.

Classes of model

R has a wide range of regression models

• lm() Linear regression

• glm() generalised linear models

• coxph() Cox model (in survival package)

• clogit() Conditional logistic regression (in survival package)

• gee() Generalised Estimating Equations (in gee and geepack

packages)

• lme(),lmer() Mixed models (in nlme and lme4 packages)

• polr() Proportional odds model (in MASS package)

• Two implementations of gam, in the mgcv and gam packages.

Example: logistic regression

Ille-et-Vilaine (o)esophageal cancer case–control study:

• All (200) cases of esophageal cancer in men in the Ille-et-

Vilaine region of Brittany over ten years

• Approximately 5 controls per case, sampled from the popu-

lation (roughly 1/500 sampling fraction)

• Interest was in age profile and in associations with alcohol

and tobacco consumption

Example: logistic regression

> library(foreign)

> esoph<-read.dta("~/TEACHING/518/esoph.dta")

> summary(esoph)

agegp alcgp tobgp case

25-34:117 0-39g/day:444 0-9g/day:603 Min. :0.000

35-44:208 40-79 :430 10-19 :294 1st Qu.:0.000

45-54:259 80-119 :189 20-29 :165 Median :0.000

55-64:318 120+ :112 30+ :113 Mean :0.170

65-74:216 3rd Qu.:0.000

75+ : 57 Max. :1.000

Example: logistic regression

Logistic regression model: indicators for age in 10-year groups,

tobacco in 10g/day, and alcohol in 30g/day groups.

> model1<-glm(case~agegp+alcgp+tobgp,data=esoph, family=binomial)

> summary(model1)

Call:
glm(formula = case ~ agegp + alcgp + tobgp, family = binomial,

data = esoph)

Deviance Residuals:
Min 1Q Median 3Q Max

-1.530 -0.655 -0.387 -0.153 2.821

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -5.911 1.030 -5.74 9.6e-09 ***
agegp35-44 1.610 1.068 1.51 0.13163
agegp45-54 2.975 1.024 2.90 0.00367 **
agegp55-64 3.358 1.020 3.29 0.00099 ***
agegp65-74 3.727 1.025 3.64 0.00028 ***
agegp75+ 3.682 1.064 3.46 0.00054 ***

Example: logistic regression

alcgp40-79 1.122 0.238 4.70 2.6e-06 ***
alcgp80-119 1.447 0.263 5.51 3.7e-08 ***
alcgp120+ 2.115 0.288 7.36 1.9e-13 ***
tobgp10-19 0.341 0.205 1.66 0.09716 .
tobgp20-29 0.396 0.246 1.61 0.10671
tobgp30+ 0.868 0.277 3.14 0.00170 **

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 1072.13 on 1174 degrees of freedom
Residual deviance: 898.86 on 1163 degrees of freedom
AIC: 922.9

The alcohol and tobacco associations are approximately linear:

termplot(model1, se=TRUE)

Example: logistic regression

-4
-3

-2
-1

0
1

agegp

P
ar

tia
l f

or
 a

ge
gp

25-34 35-44 45-54 55-64 65-74 75+

Example: logistic regression

-4
-3

-2
-1

0
1

alcgp

P
ar

tia
l f

or
 a

lc
gp

0-39g/day 40-79 80-119 120+

Example: logistic regression

-4
-3

-2
-1

0
1

tobgp

P
ar

tia
l f

or
 to

bg
p

0-9g/day 10-19 20-29 30+

Example: logistic regression

Fit a model with linear terms for alcohol and tobacco

> model2<-glm(case~agegp+as.numeric(alcgp)+as.numeric(tobgp),data=esoph,
family=binomial)

> summary(model2)
Call:
glm(formula = case ~ agegp + as.numeric(alcgp) + as.numeric(tobgp),

family = binomial, data = esoph)

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -6.5418 1.0423 -6.28 3.5e-10 ***
agegp35-44 1.5930 1.0666 1.49 0.13529
agegp45-54 2.9591 1.0233 2.89 0.00383 **
agegp55-64 3.3202 1.0186 3.26 0.00112 **
agegp65-74 3.6848 1.0233 3.60 0.00032 ***
agegp75+ 3.6276 1.0627 3.41 0.00064 ***
as.numeric(alcgp) 0.6531 0.0845 7.73 1.1e-14 ***
as.numeric(tobgp) 0.2616 0.0820 3.19 0.00142 **

Example: impact of weights

Survey statisticians would usually use sampling weights, others

would not. In this case it doesn’t make any difference. Use the

sandwich package to get correct standard errors for sampling

weights (or, tomorrow, use the survey package)

library(sandwich)
model3<- glm(formula = case ~ agegp + as.numeric(alcgp) + as.numeric(tobgp),

family = binomial, data = esoph, weights = ifelse(case ==1, 1, 500))
> coef(model3)

(Intercept) agegp35-44 agegp45-54
-12.57326 1.59534 2.97665

agegp55-64 agegp65-74 agegp75+
3.28795 3.60320 3.60496

as.numeric(alcgp) as.numeric(tobgp)
0.60672 0.23421

> coef(model2)
(Intercept) agegp35-44 agegp45-54

-6.54177 1.59303 2.95915
agegp55-64 agegp65-74 agegp75+

3.32021 3.68481 3.62764
as.numeric(alcgp) as.numeric(tobgp)

0.65308 0.26162

Example: impact of weights

> sqrt(diag(vcovHC(model3)))
(Intercept) agegp35-44 agegp45-54

1.024722 1.067502 1.026647
agegp55-64 agegp65-74 agegp75+

1.024081 1.027158 1.067215
as.numeric(alcgp) as.numeric(tobgp)

0.084669 0.086815
> SE(model2)

(Intercept) agegp35-44 agegp45-54
1.042271 1.066593 1.023264

agegp55-64 agegp65-74 agegp75+
1.018647 1.023349 1.062673

as.numeric(alcgp) as.numeric(tobgp)
0.084520 0.081977

The lack of difference is pretty typical for categorical predictors.

More difference is seen with continuous predictors, especially

heavy-tailed. The usual rule of thumb based on coefficient of

variation of weights is just not relevant here.

R Packages

The most important single innovation in R is the package

system, which provides a cross-platform system for distributing

and testing code and data.

The Comprehensive R Archive Network (http://cran.r-project.

org) distributes public packages, but packages are also useful for

internal distribution.

A package consists of a directory with a DESCRIPTION file and

subdirectories with code, data, documentation, etc. The Writing

R Extensions manual documents the package system, and

package.skeleton() simplifies package creation.

http://cran.r-project.org
http://cran.r-project.org

Packaging commands

• R CMD INSTALL packagename installs a package.

• R CMD check packagename runs the QA tools on the package.

• R CMD build packagename creates a package file.

The DESCRIPTION file

From the survey package

Package: survey
Title: analysis of complex survey samples
Description: Summary statistics, generalised linear models, and general maximum
pseudolikelihood estimation for stratified, cluster-sampled, unequally weighted
survey samples. Variances by Taylor series linearisation or replicate weights. P
ost-stratification and raking. Graphics.
Version: 2.9
Author: Thomas Lumley
Maintainer: Thomas Lumley <tlumley@u.washington.edu>
License: LGPL
Depends:
Requires: R (>=2.0.1)
Suggests: survival
Packaged: Tue Mar 8 16:30:43 2005; thomas

Depends: lists R packages needed to build this one. Requires: is

used mostly for requiring a version of R. Suggests: lists packages

needed eg to run examples. Packaged: is added automatically by

the system.

The INDEX file

This also goes in the package directory and contains information

about every sufficiently interesting function in the package.

If an INDEX file is not present it will be created from the titles of

all the help pages. The INDEX file is displayed by

library(help=packagename)

Interpreted code

R code goes in the R subdirectory, in files with extension .s, .S,

.r, .R or .q.

The filenames are sorted in ASCII order and then concatenated

(one of the few places that R doesn’t observe locale sorting

conventions).

R CMD check detects a number of common errors such as using T

instead of TRUE.

Documentation

Documentation in .Rd format (which looks rather like LATEX) is

the the man subdirectory.

R CMD Sd2Rd will convert S-PLUS documentation (either the old

troff format or the new SGML) and R CMD Rdconv will do the

reverse.

The QA tools check that every object is documented and that

the arguments a function is documented to have are the same

as the ones it actually has, and that all the examples run.

Data

Data go in the data subdirectory and are read with the data()

function.

• ASCII tables with .tab, .txt or .TXT, read using read.table(

,header=TRUE)

• R source code with .R or .r extensions, read using source

• R binary format with .Rdata or .rda extensions, read using

load.

The directory has an index file (00INDEX) to provide descriptions

of the data files.

Compiled code

C or Fortran code (or other code together with a Makefile) goes

in the src subdirectory.

It is compiled and linked to a DLL, which can be loaded with

the library.dynam function.

Obviously this requires suitable compilers. The nice people at

CRAN compile Windows and Macintosh versions of packages for

you, but only if it can be done without actual human intervention.

inst/ and Vignettes

The contents of the inst subdirectory are copied on installation.

A CITATION file can be supplied in inst to give information on how

to cite the package. These are read by the citation() function.

Please cite R and packages that you use.

Vignettes, Sweave documents that describe how to carry out par-

ticular tasks, go in the inst/doc/ subdirectory. The Bioconductor

project in bioinformatics is requiring vignettes for its packages.

You can put anything else in inst/ as well.

Tests

Additional validation tests go in the tests subdirectory. Any .R

file will be run, with output going to a corresponding .Rout file.

Errors will cause R CMD check to fail.

If there is a .Rout.save file it will be compared to the .Rout file,

with differences listed to the screen.

Distributing packages

If you have a package that does something useful and is well-

tested and documented, you might want other people to use

it too. Contributed packages have been very important to the

success of R (and before that of S-PLUS).

Packages can be submitted to CRAN by ftp.

• The CRAN maintainers will make sure that the package

passes CMD check (and will keep improving CMD check to find

more things for you to fix in future versions).

• Other users will complain if it doesn’t work on more esoteric

systems

• But it will be appreciated. Really.

	What are R and S-PLUS?
	Why not S?
	Why not R?
	How similar are R and S-PLUS?
	R GUIs
	Outline
	Reading data
	Reading text data
	Syntax notes
	Reading text data
	Syntax notes
	Reading text data
	Syntax notes
	Fixed-format data
	Other statistical packages
	The web
	Operating on data
	Subsets
	Notes
	More subsets
	Computations
	Factors
	Help
	Graphics
	Setup
	Finishing
	Drawing
	Formula interface
	Designing graphs
	Designing graphs
	Options
	
	
	
	
	
	Notes
	Adding to a plot
	Notes
	Boxplots
	Notes
	Barplots
	
	
	Large data sets
	Density plots
	Smoothers
	Notes
	Example: Confidence intervals
	
	Code
	Conditioning plots
	Trellis
	Dotplots: barley varieties
	Syntax notes
	R FAQ 7.22
	Coplot: NY ozone
	Stereo pairs
	Mathematical annotation
	Managing code and data
	Multiple projects
	Workspace is primary
	Source is primary
	Logging
	Merging and matching
	Merging: order
	Merging: merge
	Merging: merge
	How does it work: match
	Reshaping
	
	
	Broken down by age and sex
	
	Notes
	Confusing digression: str()
	One function, many variables
	apply
	New functions
	New function
	by() revisited
	Notes
	Relational databases
	Example
	Capturing output
	
	Capturing pretty output
	Sweave
	Sweave
	Example: package vignettes
	Functions
	Example: ROC curve
	Example: ROC curve
	Notes
	Theoretical note
	Historical and cultural note
	
	Example: computing the median
	Notes
	
	
	
	Simulating Data
	Bootstrap
	Too good to be true?
	Uses of bootstrap
	Example
	Notes
	How well does it work?
	Notes
	Lower quartile
	Minimum
	Bootstrap packages
	Debugging and optimization
	Timing
	Memory
	Debugging
	Debugging: trace
	Faster code
	A very little on objects
	Generics and methods
	
	Methods
	New classes
	ROC curves (again)
	ROC curve object
	Methods
	Methods
	Methods
	Statistical Modelling in S
	Examples
	Generalised linear models
	Model objects
	Classes of model
	Example: logistic regression
	Example: impact of weights
	R Packages
	Packaging commands
	The DESCRIPTION file
	The INDEX file
	Interpreted code
	Documentation
	Data
	Compiled code
	inst/ and Vignettes
	Tests
	Distributing packages

